Browse Results

Showing 68,776 through 68,800 of 73,729 results

Thermodiffusion in Multicomponent Mixtures

by M. Ziad Saghir Seshasai Srinivasan

Thermodiffusion in Multicomponent Mixtures presents the computational approaches that are employed in the study of thermodiffusion in various types of mixtures, namely, hydrocarbons, polymers, water-alcohol, molten metals, and so forth. We present a detailed formalism of these methods that are based on non-equilibrium thermodynamics or algebraic correlations or principles of the artificial neural network. The book will serve as single complete reference to understand the theoretical derivations of thermodiffusion models and its application to different types of multi-component mixtures. An exhaustive discussion of these is used to give a complete perspective of the principles and the key factors that govern the thermodiffusion process.

Thermodynamic Degradation Science: Physics of Failure, Accelerated Testing, Fatigue, and Reliability Applications

by Alec Feinberg

Thermodynamic degradation science is a new and exciting discipline. This book merges the science of physics of failure with thermodynamics and shows how degradation modeling is improved and enhanced when using thermodynamic principles. The author also goes beyond the traditional physics of failure methods and highlights the importance of having new tools such as "Mesoscopic" noise degradation measurements for prognostics of complex systems, and a conjugate work approach to solving physics of failure problems with accelerated testing applications. Key features: * Demonstrates how the thermodynamics energy approach uncovers key degradation models and their application to accelerated testing. * Demonstrates how thermodynamic degradation models accounts for cumulative stress environments, effect statistical reliability distributions, and are key for reliability test planning. * Provides coverage of the four types of Physics of Failure processes describing aging: Thermal Activation Processes, Forced Aging, Diffusion, and complex combinations of these. * Coverage of numerous key topics including: aging laws; Cumulative Accelerated Stress Test (CAST) Plans; cumulative entropy fatigue damage; reliability statistics and environmental degradation and pollution. Thermodynamic Degradation Science: Physics of Failure, Accelerated Testing, Fatigue and Reliability Applications is essential reading for reliability, cumulative fatigue, and physics of failure engineers as well as students on courses which include thermodynamic engineering and/or physics of failure coverage.

Thermodynamic Inversion

by Vladimir N. Kompanichenko

This book discusses the theory, general principles, and energy source conditions allowing for the emergence of life in planetary systems. The author examines the material conditions found in natural hydrothermal sites, the appropriate analogs of prebiotic environments on early Earth. He provides an overview of current laboratory experiments in prebiotic materials chemistry and substantiation of a new direction for the experiments in the origin of life field.Describes thermodynamic inversion and how it relates to the living cell;Examines the current direction of experiments on prebiotic materials chemistry;Introduces and substantiates necessary conditions for the emergence of life.

Thermodynamic Measurement Techniques (The Minerals, Metals & Materials Series)

by Mohammad Shamsuddin

This book offers various techniques for measurement of thermodynamic quantities of materials such as enthalpy, free energy, and entropy. Techniques described herein include calorimetry, chemical equilibria, vapour pressure, and electrochemical analysis. The book covers general and solution thermodynamics in Chapters 1 and 2, respectively, and highlights the significance of various thermodynamic quantities required for materials characterization and development in Chapter 3. The author goes on to discuss different thermodynamic measurement techniques in detail (Chapters 4-8) together with a set of more than fifty worked-out problems related to classical as well as solution thermodynamics and measurement techniques. (Chapter 9).Topics include but are not limited to the following:The significance of various thermodynamic data required for selection and characterization of materials.The physicochemical principles involved in various thermodynamic measurement and on the evaluation of thermodynamic data by phase diagram analyses. The unique combination of calorimetry and chemical equilibrium for simultaneous determination of partial molar enthalpy and partial molar free energy of hydrogen in metals and alloys.The special technique based on the combination of vapor pressure and electrical conductivity to study the effect of tellurium vapor pressure on the mode of conduction in polycrystalline cadmium telluride.

Thermodynamic Mechanism of MQL Grinding with Nano Bio-lubricant

by Changhe Li

This book discusses the thermodynamic mechanism of MQL grinding with nano-biological lubricant from the force, heat, surface integrity, and micro-morphology.It makes up the fatal defect of the lack of heat transfer capability of traditional MQL grinding. The machining accuracy, surface quality, especially surface integrity of the workpiece, are significantly improved; at the same time, the service life of the grinding wheel is increased and the working environment is improved.The general scope of the book’s content is the effects of MQL grinding with nano-bio-lubricant on grinding force, thermal mechanism, and surface.It provides a new method of sustainable green grinding for environment-friendly, resource-saving, and energy-efficient utilization and solves the technical bottleneck of the insufficient capacity in MQL heat transfer.

Thermodynamic Processes 1: Systems without Physical State Change

by Salah Belaadi

Thermodynamic Processes 1 offers a comprehensive take on process engineering, whereby technology transforms materials and energy production into various products. The scientific methods required for designing such processes are the result of knowledge from a number of different disciplines. As a result, thermodynamics is the basic discipline in process engineering training. The application of laws and concepts of thermodynamics is essential before the design and optimization of any process, which allows downstream to control its reliability and validity. This book offers a pragmatic approach through practical and varied examples, chosen for their didactic and industrial interest.

Thermodynamic Processes 2: State and Energy Change Systems

by Salah Belaadi

Thermodynamic Processes 2 is devoted to the study of equilibrium between phases in the case of the four changes of physical state: fusion, boiling or vaporization, sublimation and allotropy or transition. It also includes a section that addresses energy's relationship to the zero sum aspect of exergy and thermal cycles. This second volume presents scientific and technical examples – both theoretical and industrial – which are the result of a careful selection, accrued over more than three decades of teaching thermodynamics and in collaboration with the industry sector. The didactic exercises and the practical problems are entirely dedicated to the understanding of this science, and the potential applications for the industrial world. This book is a tool for work and reflection essential for the student in training, as well as the engineer or experienced researcher.

Thermodynamic Properties Of Isomerization Reactions

by M. L. Frenkel

This handbook presents the thermodynamic functions obtained primarily from the results of equilibrium studies of isomerization reactions and by measurements of the heats of combustion of isomer groups by the calorimetric method.

Thermodynamic Properties of Cryogenic Fluids

by Jacob W. Leachman Richard T Jacobsen Eric W. Lemmon Steven G. Penoncello

Practicing engineers and scientist will benefit from this book's presentation of the most accurate information on the subject. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. The book is supported by ICMPROPRS - an interactive computer program for the calculation of thermodynamic properties of the cryogenic fluids - that can be downloaded from the World Wide Web.

Thermodynamic and Thermophysical Properties of Saline Water: Models, Correlations and Data for Desalination and Relevant Applications (Springer Water)

by Naef A. Qasem Muhammad M. Generous Bilal A. Qureshi Syed M. Zubair

​This book accommodates the existing correlations, data, and methods for thermodynamic and thermophysical properties of saline water, including multiple components at a wide range of salinity (reaching around 200 g/kg), temperature, and pressure. The correlations of each property are plotted against existing experimental data to judge the comparative accuracy of each within a given specific range of salinity, temperature, and pressure. An assessment to recommend some correlations is also conducted. New correlations for some properties are also proposed. This book helps to provide the saline water properties as needed for engineers, designers, and research for different areas, including desalination and water treatment.All the analytical analysis, thermodynamic analysis, and design models of the desalination technologies depend on saline water properties. As scientists and researchers working on different desalination technologies, the authors found it difficult to find all saline water properties in one source, including multicomponent and binary salty solutions, under different conditions (salinity, temperature, and pressure). Therefore, the authors introduce this book to fill the gap in the open literature. This book compiles the thermodynamic and thermophysical properties of saline water, involving thermodynamic approaches, multicomponent models, and simple correlations and data, comparison between the correlations of properties in figures, recommendation of the most accurate correlations and methods, and the used codes to estimate these correlations and methods. It is expected that this book to be a principal source for all interests in desalination and water treatment subjects.

Thermodynamic and Transport Properties of Fluids

by G. F. Rogers Y. R. Mayhew

The fifth edition has been issued to incorporate two new tables - Data of Refrigerant 134a and a table containing for selected substances, molar enthalpies and molar Gibbs functions of formation, Equilibirum constants of formation, as well as molar heat capacities and absolute entropies.

Thermodynamics

by Gregory Nellis Sanford Klein

This book differs from other thermodynamics texts in its objective which is to provide engineers with the concepts, tools, and experience needed to solve practical real-world energy problems. The presentation integrates computer tools (e.g., EES) with thermodynamic concepts to allow engineering students and practising engineers to solve problems they would otherwise not be able to solve. The use of examples, solved and explained in detail, and supported with property diagrams that are drawn to scale, is ubiquitous in this textbook. The examples are not trivial, drill problems, but rather complex and timely real world problems that are of interest by themselves. As with the presentation, the solutions to these examples are complete and do not skip steps. Similarly the book includes numerous end of chapter problems, both typeset and online. Most of these problems are more detailed than those found in other thermodynamics textbooks. The supplements include complete solutions to all exercises, software downloads, and additional content on selected topics. These are available at the book web site www.cambridge.org/KleinandNellis.

Thermodynamics For Dummies

by Michael Pauken

Take some heat off the complexity of thermodynamics Does the mere thought of thermodynamics make you sweat? It doesn't have to! This hands-on guide helps you score your highest in a thermodynamics course by offering easily understood, plain-English explanations of how energy is used in things like automobiles, airplanes, air conditioners, and electric power plants. Thermodynamics 101 - take a look at some examples of both natural and man-made thermodynamic systems and get a handle on how energy can be used to perform work Turn up the heat - discover how to use the first and second laws of thermodynamics to determine (and improve upon) the efficiency of machines Oh, behave - get the 411 on how gases behave and relate to one another in different situations, from ideal-gas laws to real gases Burn with desire - find out everything you need to know about conserving mass and energy in combustion processes Open the book and find: The laws of thermodynamics Important properties and their relationships The lowdown on solids, liquids, and gases How work and heat go handin hand The cycles that power thermodynamic processes Chemical mixtures and reactions Ten pioneers in thermodynamics Real-world applications of thermodynamic laws and concepts Learn to: Master the concepts and principles of thermodynamics Develop the problem-solving skills used by professional engineers Ace your thermodynamics course

Thermodynamics For Dummies

by Michael Pauken

The thermodynamics knowledge you need to succeed in class—and in your career Thermodynamics For Dummies, 2nd Edition covers the topics found in a typical undergraduate introductory thermodynamic course (which is an essential course to nearly all engineering degree programs). It also brings the subject to life with exciting content on where (and how!) thermodynamics is being used today (spoiler alert: everywhere!). You'll grasp the basics of how heat and energy interact, thermodynamic properties of reactions and mixtures, and how thermodynamic cycles are used to make things go. This useful guide also covers renewable energy systems, new refrigerant technology, and a more diverse perspective on the history of the field. Within, you'll: Get clear explanations of the laws of thermodynamics, thermodynamic cycles, and beyond Read about real-world examples to help you connect with the content Practice solving thermodynamic problems to internalize what you've learned For students looking for resources to demystify thermodynamics, Thermodynamics For Dummies, 2nd Edition is the perfect choice. Become thermodynamically savvy with this accessible guide!

Thermodynamics In Nuclear Power Plant Systems

by Bahman Zohuri Patrick Mcdaniel

This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibility, availability, and Maxwell relations. Specific applications of the fundamentals to Brayton and Rankine cycles for power generation are considered in-depth, in support of the book's core goal- providing an examination of how the thermodynamic principles are applied to the design, operation and safety analysis of current and projected reactor systems. Detailed appendices cover metric and English system units and conversions, detailed steam and gas tables, heat transfer properties, and nuclear reactor system descriptions.

Thermodynamics Made Simple for Energy Engineers: & Engineers in Other Disciplines

by S. Bobby Rauf

Every non-fiction book has an objective or mission. The mission of this book is to give the reader an overview of the important principles, concepts and analytical techniques pertaining to thermodynamics, written in a fashion that makes this abstract and complex subject relatively easy to comprehend. The audience this text speaks to includes engineers, professionals with science and math backgrounds, energy professionals, and technicians. The content is presented in a way which also allows many non-engineering professionals to follow the material and glean useful knowledge. For energy engineers who have been away from direct engineering practice for a while, this book will serve as a quick and effective refresher. Thermodynamics topics such as enthalpy, entropy, latent heat, sensible heat, heat of fusion, and heat of sublimation are explained and illustrated in detail. Also covered are phases of substances, the law of conservation of energy, SFEE, the first and second laws of thermodynamics, ideal gas laws, and pertinent formulas. The author examines various thermodynamic processes, as well as heat and power cycles such as Rankine and Carnot. Case studies are used to illustrate various thermodynamics principles, and each chapter concludes with a list of questions or problems for self-assessment, with answers provided at the end of the book.

Thermodynamics and Biophysics of Biomedical Nanosystems: Applications and Practical Considerations (Series in BioEngineering)

by Costas Demetzos Natassa Pippa

This book highlights the recent advances of thermodynamics and biophysics in drug delivery nanosystems and in biomedical nanodevices. The up-to-date book provides an in-depth knowledge of bio-inspired nanotechnological systems for pharmaceutical applications. Biophysics and thermodynamics, supported by mathematics, are the locomotive by which the drug transportation and the targeting processes will be achieved under the light of the modern pharmacotherapy. They are considered as scientific tools that promote the understanding of physicochemical and thermotropic functionality and behavior of artificial cell membranes and structures like nanoparticulate systems. Therefore, this book focusses on new aspects of biophysics and thermodynamics as important elements for evaluating biomedical nanosystems, and it correlates their physicochemical, biophysical and thermodynamical behaviour with those of a living organism.In 2018, Prof. Demetzos was honored with an award by the Order of Sciences of the Academy of Athens for his scientific contribution in Pharmaceutical Nanotechnology.

Thermodynamics and Ecological Modelling (Environmental & Ecological (Math) Modeling)

by Sven E. Jorgensen

Thermodynamics is used increasingly in ecology to understand the system properties of ecosystems because it is a basic science that describes energy transformation from a holistic view. In the last decade, many contributions to ecosystem theory based on thermodynamics have been published, therefore an important step toward integrating these theories and encouraging a more wide spread use of them is to present them in one volume.An ecosystem consists of interdependent living organisms that are also interdependent with their environment, all of which are involved in a constant transfer of energy and mass within a general state of equilibrium or dis-equilibrium. Thermodynamics can quantify exactly how "organized" or "disorganized" a system is - an extremely useful to know when trying to understand how a dynamic ecosystem is behaving.A part of the Environmental and Ecological (Math) Modeling series, Thermodynamics and Ecology is a book-length study - the first of its kind - of the current thinking on how an ecosystem can be explained and predicted in terms of its thermodynamical behavior. After the introductory chapters on the fundamentals of thermodynamics, the book explains how thermodynamic theory can be specifically applied to the "measurement" of an ecosystem, including the assessment of its state of entropy and enthalpy. Additionally, it will show economists how to put these theories to use when trying to quantify the movement of goods and services through another type of complex living system - a human society.

Thermodynamics and Heat Power

by Irving Granet Maurice Bluestein

Building on the last edition, (dedicated to exploring alternatives to coal- and oil-based energy conversion methods and published more than ten years ago), Thermodynamics and Heat Power, Eighth Edition updates the status of existing direct energy conversion methods as described in the previous work. Offering a systems approach to the analysis of en

Thermodynamics and Heat Power, Ninth Edition

by Irving Granet Maurice Bluestein Jorge Alvarado

The ninth edition of Thermodynamics and Heat Power contains a revised sequence of thermodynamics concepts including physical properties, processes, and energy systems, to enable the attainment of learning outcomes by Engineering and Engineering Technology students taking an introductory course in thermodynamics. Built around an easily understandable approach, this updated text focuses on thermodynamics fundamentals, and explores renewable energy generation, IC engines, power plants, HVAC, and applied heat transfer. Energy, heat, and work are examined in relation to thermodynamics cycles, and the effects of fluid properties on system performance are explained. Numerous step-by-step examples and problems make this text ideal for undergraduate students. This new edition: Introduces physics-based mathematical formulations and examples in a way that enables problem-solving. Contains extensive learning features within each chapter, and basic computational exercises for in-class and laboratory activities. Includes a straightforward review of applicable calculus concepts. Uses everyday examples to foster a better understanding of thermal science and engineering concepts. This book is suitable for undergraduate students in engineering and engineering technology.

Thermodynamics for Chemists, Physicists and Engineers

by Robert Hołyst Andrzej Poniewierski

Thermodynamics is an essential part of chemical physics and is of fundamental importance in physics, chemistry and engineering courses. This textbook takes an interdisciplinary approach to the subject and is therefore suitable for undergraduates in all those courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variables, non-ideal mixtures and electrochemical reactions, which make this book of suitable also to post-graduate students. Robert Hołyst (1963) is a professor at the Institute of Physical Chemistry Polish Academy of Sciences. He specializes in statistical physics, physical chemistry, biologistics and soft matter physics. He has published 182 papers and 2 books. He presented his works at multiple universities/institutes, e.g. Harvard, MIT, University of Chicago, ESPCI-Paris, ENS-Paris, several Max Planck Institutes, University of Tokyo, Oxford and Cambridge. He has over 17 years experience in teaching thermodynamics for undergraduate students. Andrzej Poniewierski (1951), professor at the Institute of Physical Chemistry Polish Academy of Sciences; published 53 papers and two books, specializes in soft matter and statistical physics, liquid crystals and applications of density functional theory to complex fluids. He has also taught thermodynamics for undergraduate students for several years.

Thermodynamics for Engineers (Mechanical and Aerospace Engineering Series)

by Kaufui Vincent Wong

Aspiring engineers need a text that prepares them to use thermodynamics in professional practice. Thermodynamics instructors need a concise textbook written for a one-semester undergraduate course-a text that foregoes clutter and unnecessary details but furnishes the essential facts and methods.Thermodynamics for Engineers, Second Edition continues

Thermodynamics for the Practicing Engineer

by Louis Theodore Francesco Ricci Timothy Van Vliet

This book concentrates specifically on the applications of thermodynamics, rather than the theory. It addresses both technical and pragmatic problems in the field, and covers such topics as enthalpy effects, equilibrium thermodynamics, non-ideal thermodynamics and energy conversion applications. Providing the reader with a working knowledge of the principles of thermodynamics, as well as experience in their application, it stands alone as an easy-to-follow self-teaching aid to practical applications and contains worked examples.

Thermodynamics in Materials Science

by Robert DeHoff

Thermodynamics in Materials Science, Second Edition is a clear presentation of how thermodynamic data is used to predict the behavior of a wide range of materials, a crucial component in the decision-making process for many materials science and engineering applications. This primary textbook accentuates the integration of principles, strategies, a

Thermodynamics in Nuclear Power Plant Systems

by Bahman Zohuri Patrick McDaniel

This revised book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. This text treats the fundamentals of thermodynamics from the perspective of nuclear power systems. In addition to the Four Laws of Thermodynamics, it discusses Brayton and Rankine power cycles in detail with an emphasis on how they are implemented in nuclear systems. Chapters have been brought up-to-date due to significant new results that have become available for intercooled systems and combined cycles and include an updated steam table. The book starts with basic principles of thermodynamics as applied to power plant systems. It then describes how Nuclear Air-Brayton systems will work. It documents how they can be designed and the expected ultimate performance. It describes several types of Nuclear Air-Brayton systems that can be employed to meet different requirements and estimates component sizes and performance criteria for Small Modular Reactors (SMR) based on the Air-Brayton concept. The book provides useful insight into the engineering of nuclear power systems for students and the tabular data will be of great use to practicing engineers.

Refine Search

Showing 68,776 through 68,800 of 73,729 results