Browse Results

Showing 826 through 850 of 73,122 results

Acoustic Levitation-Based Trace-Level Biosensing: Design of Detection Systems and Applications to Real Samples (Springer Theses)

by Akihisa Miyagawa

This book shows the availability and potential of the coupled acoustic-gravitational (CAG) field for trace-level biosensing. The proposed detection scheme also allows the evaluation of the kinetics and thermodynamics of the reaction occurring on a single microparticle (MP). This method has wide applicability in important fields, involving not only chemistry but also life, environmental, and medical sciences. The author proposes novel trace-level biosensing based on measurements of the levitation coordinate shift of an MP in the CAG field. The levitation coordinate of the MP in the CAG field is determined by its density and compressibility. The levitation coordinate shift is induced by the binding of gold nanoparticles (AuNPs) to the MP through interparticle reactions. Therefore, the quantity of molecules involved in the reaction can be determined from the levitation coordinate shift. The author demonstrates the zmol level detection for biotin, DNA/RNA, and organic molecules. In addition, the kinetics and thermodynamics are evaluated for various reactions occurring between the MP and AuNP, such as the avidin-biotin reaction, direct hybridization, sandwich hybridization, and aptamer-target complexation.This book provides a new concept based on the CAG field, in which the extent of a reaction is converted into the levitation coordinate shift, that is, “length.” The proposed method has many advantages over other methods, e.g., high biocompatibility, high applicability, and short analysis time. In addition, because the apparatus used in this study is inexpensive and easy to miniaturize, this method is useful in important practical fields, such as forensic and environmental science and diagnosis. Thus, this book inspires many researchers to apply the present method to their own fields of interest.

Acoustic Metamaterials: Absorption, Cloaking, Imaging, Time-Modulated Media, and Topological Crystals (Springer Series in Materials Science #345)

by Richard Craster Sébastien Guenneau

The revised edition of this book offers an expanded review of acoustic metamaterials; novel materials which can manipulate sound waves, surface Rayleigh waves and water waves, in surprising ways, which include collimation, focusing, negative refraction, passive and active cloaking, sonic screening and extraordinary transmission. It covers both experimental and theoretical aspects of acoustic and elastic waves propagating in structured composites, with a focus on effective properties associated with negative refraction, lensing and cloaking. Updated chapters cover filtering effects, extraordinary transmission, sub-wavelength imaging via tomography or time-reversal techniques, cloaking via transformation acoustics, elastodynamics, and acoustic scattering cancellation. For this revised edition, six new chapters have been introduced to reflect recent developments in experimental acoustics and metasurfaces including acoustic impedance gratings and mirror symmetric metamaterials, phononic subsurfaces, time-modulated and topological crystals. The latter two are illustrated by simple Python program examples. The broad scope gives the reader an overview of the state of the art in acoustic metamaterials research and an indication of future directions and applications. It will serve as a solid introduction to the field for advanced students and researchers in physics, applied mathematics and mechanical engineering, and a valuable reference for those working in metamaterials and related areas.

Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking (Springer Series in Materials Science #166)

by Richard V. Craster Sébastien Guenneau

About the book: This book is the first comprehensive review on acoustic metamaterials; novel materials which can manipulate sound waves in surprising ways, which include collimation, focusing, cloaking, sonic screening and extraordinary transmission. It covers both experimental and theoretical aspects of acoustic and elastic waves propagating in structured composites, with a focus on effective properties associated with negative refraction, lensing and cloaking. Most related books in the field address electromagnetic metamaterials and focus on numerical methods, and little (or no) experimental section. Each chapter will be authored by an acknowledged expert, amongst the topics covered will be experimental results on non-destructive imaging, cloaking by surface water waves, flexural waves in thin plates. Applications in medical ultrasound imaging and modeling of metamaterials will be emphasized too. The book can serve as a reference for researchers who wish to build a solid foundation of wave propagation in this class of novel materials.

Acoustic Metamaterials and Phononic Crystals (Springer Series in Solid-State Sciences #173)

by Pierre A. Deymier

This comprehensive book presents all aspects of acoustic metamaterials and phononic crystals. The emphasis is on acoustic wave propagation phenomena at interfaces such as refraction, especially unusual refractive properties and negative refraction. A thorough discussion of the mechanisms leading to such refractive phenomena includes local resonances in metamaterials and scattering in phononic crystals.

Acoustic Modeling for Emotion Recognition (SpringerBriefs in Speech Technology)

by Koteswara Rao Anne Swarna Kuchibhotla Hima Deepthi Vankayalapati

This book presents state of art research in speech emotion recognition. Readers are first presented with basic research and applications - gradually more advance information is provided, giving readers comprehensive guidance for classify emotions through speech. Simulated databases are used and results extensively compared, with the features and the algorithms implemented using MATLAB. Various emotion recognition models like Linear Discriminant Analysis (LDA), Regularized Discriminant Analysis (RDA), Support Vector Machines (SVM) and K-Nearest neighbor (KNN) and are explored in detail using prosody and spectral features, and feature fusion techniques.

Acoustic Particle Velocity Measurements Using Lasers: Principles, Signal Processing and Applications

by Jean-Christophe Valière

This book concerns the presentation of particle velocity measurement for acoustics using lasers, including Laser Doppler Velocimetry (LDV or Anemometry (LDA)) and Particle Imagery Velocimetry (PIV).The objective is first to present the importance of measuring the acoustic velocity, especially when the acoustic equations are nonlinear as well as characterizing the near fields. However, these applications need to use non-invasive sensors. Some optical techniques, initially developed for fluid mechanics, have been adapted to the field of acoustics in recent years. This book summarizes 15 years of research in this area, highlighting the improvements that have been made, particularly in signal processing, and showing applications for which they have proven to be a carrier of innovation.

Acoustic Sensors for Biomedical Applications (SpringerBriefs in Speech Technology)

by Nilanjan Dey Amira S. Ashour Waleed S. Mohamed Nhu Gia Nguyen

In this book, application-related studies for acoustic biomedical sensors are covered in depth. The book features an array of different biomedical signals, including acoustic biomedical signals as well as the thermal biomedical signals, magnetic biomedical signals, and optical biomedical signals to support healthcare. It employs signal processing approaches, such as filtering, Fourier transform, spectral estimation, and wavelet transform. The book presents applications of acoustic biomedical sensors and bio-signal processing for prediction, detection, and monitoring of some diseases from the phonocardiogram (PCG) signal analysis. Several challenges and future perspectives related to the acoustic sensors applications are highlighted. This book supports the engineers, researchers, designers, and physicians in several interdisciplinary domains that support healthcare.

Acoustic Textiles (Textile Science and Clothing Technology)

by Rajiv Padhye Rajkishore Nayak

This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

Acoustic Waves Generated by Parametric Array Loudspeakers

by Xiaojun Qiu Jiaxin Zhong

Parametric array loudspeakers (PALs) are capable of generating highly directional audio beams from nonlinear interactions of intense airborne ultrasound waves. This unique capability holds great potential in audio engineering. This book systematically introduces the physical principles of acoustics waves generated by PALs, along with the commonly used and the state-of-the-art numerical models, such as the Westervelt model, the convolution directivity model, the Gaussian beam expansion method, and the spherical wave expansion method.The properties of sound fields generated by PALs are analyzed. Also analyzed are various phenomena including the reflection of acoustics waves generated by PALs from a surface, transmission through a thin partition, scattering by a rigid sphere, and propagation in rooms. Furthermore, the steering and focusing of acoustics waves generated by PALs and potential applications of PALs in active sound control are investigated. Finally, the implementation issues of hardware, signal processing techniques, measurement, and safety are discussed.The book is tailored to meet the needs of researchers in this field, as well as audio practitioners and acoustics engineers.

Acoustic Waves in Boreholes

by Frederick L. Paillet Chuen Hon Cheng

Introducing the first, self-contained reference on acoustic waveform loggingAcoustic measurements in boreholes were first made as a specialized logging technique in geological exploration, but recent advances have greatly expanded the potential applications of this technique. Acoustic Waves in Boreholes provides a thorough review of the theory and interpretation techniques needed to realize these applications, emphasizing the role of guided modes and critically refracted waves in determining the characteristics of recorded waveforms. Topics covered in this comprehensive volume include the seismic properties of rocks; propagation of axisymmetric waves along fluid-filled boreholes in isotropic rocks; and symmetric and nonsymmetric sources in isotropic, transversely isotropic, and porous, permeable formations in open and cased boreholes. Each chapter includes the theory of synthetic microseismogram computation, interpretation and data inversion techniques illustrated using computed seismograms, and case histories using experimental data. Appendices providing the mathematical formulation needed to compute microseismograms, with a single consistent notation used throughout, are also included in appropriate chapters.The wide range of geomechanical properties covered in this book will interest exploration geophysicists, reservoir engineers, civil engineers, geologists, and soil scientists.

Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media: From Fundamentals to Industrial Applications (Topics in Applied Physics #143)

by Noé Jiménez Olga Umnova Jean-Philippe Groby

This book delivers a comprehensive and up-to-date treatment of practical applications of metamaterials, structured media, and conventional porous materials. With increasing levels of urbanization, a growing demand for motorized transport, and inefficient urban planning, environmental noise exposure is rapidly becoming a pressing societal and health concern. Phononic and sonic crystals, acoustic metamaterials, and metasurfaces can revolutionize noise and vibration control and, in many cases, replace traditional porous materials for these applications.In this collection of contributed chapters, a group of international researchers reviews the essentials of acoustic wave propagation in metamaterials and porous absorbers with viscothermal losses, as well as the most recent advances in the design of acoustic metamaterial absorbers. The book features a detailed theoretical introduction describing commonly used modelling techniques such as plane wave expansion, multiple scattering theory, and the transfer matrix method. The following chapters give a detailed consideration of acoustic wave propagation in viscothermal fluids and porous media, and the extension of this theory to non-local models for fluid saturated metamaterials, along with a description of the relevant numerical methods. Finally, the book reviews a range of practical industrial applications, making it especially attractive as a white book targeted at the building, automotive, and aeronautic industries.

Acoustical Analysis of the Tanpura: Indian Plucked String Instrument (Signals and Communication Technology)

by Asoke Kumar Datta Ranjan Sengupta Kaushik Banerjee Dipak Ghosh

This book addresses the acoustic signal analysis and spectral dynamics of the tanpura, an Indian plucked string instrument. In addition, it strives to provide a logical and objective explanation of Indian classical musicians’ cognitive experience. Issues of relevance in this regard include the rich, mellifluous sound; the undulation of the loudness; the somewhat cyclical variation of the timbre, which is strongly related to these undulations; and the occasional perception of virtual notes to which no strings are tuned. The book analyses the materials used in the tanpura, the instrument’s simple structure, the intricacies of the lower bridge, and the theory of string vibration with variable string length. Cognitive experiments to provide the basis for perceptual quality assessment, as well as a methodology for ranking, are described. This is followed by acoustic analyses, both temporal and spectral, for sounds produced by male and female tanpuras, for each individual string and the combined one. An important aspect related to the naturalness of perceived sound, namely the intrinsically associated random perturbations, is also discussed. The apparent irregularities perceived in the acoustic signal produced by the tanpura reveal the importance of examining the signal from the perspective of non-linear analysis, an aspect that is also covered in the book. Given its scope, the book will appeal to students and researchers in the fields of music acoustics, artificial intelligence, and cognitive science, as well as musicians and musicologists around the world.

Acoustical Imaging

by Woon Siong Gan

The technology of acoustical imaging has advanced rapidly over the last sixty years, and now represents a sophisticated technique applied to a wide range of fields including non-destructive testing, medical imaging, underwater imaging and SONAR, and geophysical exploration. Acoustical Imaging: Techniques and Applications for Engineers introduces the basic physics of acoustics and acoustical imaging, before progressing to more advanced topics such as 3D and 4D imaging, elasticity theory, gauge invariance property of acoustic equation of motion and acoustic metamaterials. The author draws together the different technologies in sonar, seismic and ultrasound imaging, highlighting the similarities between topic areas and their common underlying theory.Key features:Comprehensively covers all of the important applications of acoustical imaging.Introduces the gauge invariance property of acoustic equation of motion, with applications in the elastic constants of isotropic solids, time reversal acoustics, negative refraction, double negative acoustical metamaterial and acoustical cloaking.Contains up to date treatments on latest theories of sound propagation in random media, including statistical treatment and chaos theory.Includes a chapter devoted to new acoustics based on metamaterials, a field founded by the author, including a new theory of elasticity and new theory of sound propagation in solids and fluids and tremendous potential in several novel applications.Covers the hot topics on acoustical imaging including time reversal acoustics, negative refraction and acoustical cloaking.Acoustical Imaging: Techniques and Applications for Engineers is a comprehensive reference on acoustical imaging and forms a valuable resource for engineers, researchers, senior undergraduate and graduate students.

Acoustical Imaging: Volume 30 (Acoustical Imaging #30)

by Hua Lee Joie P. Jones Michael P. André

In the course of the years the volumes in the Acoustical Imaging Series have developed to become well-known and appreciated reference works. Offering both a broad perspective on the state of the art in the field as well as an in-depth look at its leading edge research, this Volume 30 in the Series contains again an excellent collection of contributions, presented in five major categories:

Acoustical Imaging: Volume 31 (Acoustical Imaging #31)

by Andrzej Nowicki Jerzy Litniewski Tamara Kujawska

The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

Acoustical Sensing and Imaging

by Hua Lee

For complex operating modalities and dimensionalities, the design and development of high-performance sensing and imaging systems represent the most direct and significant advances in the field of system analysis and signal processing. In this field, the core components are physical modeling, mathematical analysis, formulation of image reconstructi

Acoustics: An Introduction to Its Physical Principles and Applications (Physical Acoustics Ser. #Volume 19)

by Allan D. Pierce

This corrected version of the landmark 1981 textbook introduces the physical principles and theoretical basis of acoustics with deep mathematical rigor, concentrating on concepts and points of view that have proven useful in applications such as noise control, underwater sound, architectural acoustics, audio engineering, nondestructive testing, remote sensing, and medical ultrasonics.Since its publication, this text has been used as part of numerous acoustics-related courses across the world, and continues to be used widely today. During its writing, the book was fine-tuned according to insights gleaned from a broad range of classroom settings. Its careful design supports students in their pursuit of a firm foundation while allowing flexibility in course structure. The book can easily be used in single-term or full-year graduate courses and includes problems and answers. This rigorous and essential text is a must-have for any practicing or aspiring acoustician.

Acoustics, Aeroacoustics and Vibrations

by Pierre-Olivier Mattei Fabien Anselmet

This didactic book presents the main elements of acoustics, aeroacoustics and vibrations. Illustrated with numerous concrete examples linked to solid and fluid continua, Acoustics, Aeroacoustics and Vibrations proposes a selection of applications encountered in the three fields, whether in room acoustics, transport, energy production systems or environmental problems. Theoretical approaches enable us to analyze the different processes in play. Typical results, mostly from numerical simulations, are used to illustrate the main phenomena (fluid acoustics, radiation, diffraction, vibroacoustics, etc.).

Acoustics and Noise Control

by R J Peters

Acoustics and Noise Control provides a detailed and comprehensive introduction to the principles and practice of acoustics and noise control. Since the last edition was published in 1996 there have been many changes and additions to standards, laws and regulations, codes of practice relating to noise, and in noise measurement techniques and noise control technology so this new edition has been fully revised and updated throughout. The book assumes no previous knowledge of the subject and requires only a basic knowledge of mathematics and physics. There are worked examples in the text to aid understanding and a range of experiments help students use complicated apparatus. Thoroughly revised to cover the latest changes in standards, codes of practice and legislation, this new edition covers much of the Institute of Acoustics Diploma syllabus and has an increased emphasis on the legal issues relating to noise control.

Acoustics and Psychoacoustics

by David M. Howard Jamie Angus

The acoustics of a space can have a real impact on the sounds you create and capture. Acoustics and Psychoacoustics, Fifth Edition provides supportive tools and exercises to help you understand how music sounds and behaves in different spaces, whether during a performance or a recording, when planning a control room or listening space, and how it is perceived by performers, listeners, and recording engineers. With their clear and simple style, Howard and Angus cover both theory and practice by addressing the science of sound engineering and music production, the acoustics of musical instruments, the ways in which we hear musical sounds, the underlying principles of sound processing, and the application of these concepts to music spaces to create professional sound. This new edition is fully revised to reflect new psychoacoustic information related to timbre and temporal perception, including an updated discussion of vocal fold vibration principles, samples of recent acoustic treatments, and a description of variable acoustics in spaces, as well as coverage of the environment’s effect on production listening, sonification, and other topics. Devoted to the teaching of musical understanding, an accompanying website (www.routledge.com/cw/howard) features various audio clips, tutorial sheets, questions and answers, and trainings that will take your perception of sound to the next level. This book will help you: Gain a basic grounding in acoustics and psychoacoustics with respect to music audio technology systems Incorporate knowledge of psychoacoustics in future music technology system designs as appropriate Understand how we hear pitch, loudness, and timbre Learn to influence the acoustics of an enclosed space through designed physical modifications

Acoustics and the Performance of Music: Manual for Acousticians, Audio Engineers, Musicians, Architects and Musical Instrument Makers (Modern Acoustics and Signal Processing #Vol. 729)

by Uwe Hansen Jürgen Meyer

This classic reference on musical acoustics and performance practice begins with a brief introduction to the fundamentals of acoustics and the generation of musical sounds. It then discusses the particulars of the sounds made by all the standard instruments in a modern orchestra as well as the human voice, the way in which the sounds made by these instruments are dispersed and how the room into which they are projected affects the sounds.

Acoustics and Vibration of Mechanical Structures – AVMS-2021: Proceedings of the 16th AVMS, Timişoara, Romania, May 28-29, 2021 (Springer Proceedings in Physics #274)

by Nicolae Herisanu Vasile Marinca

This book is a collection of contributions presented at the 16th Conference on Acoustic and Vibration of Mechanical Structure held in Timişoara, Romania, May 28, 2021. The conference focused on a broad range of topics related to acoustics and vibration, such as noise and vibration control, noise and vibration generation and propagation, effects of noise and vibration, condition monitoring and vibration testing, modelling, prediction and simulation of noise and vibration, environmental and occupational noise and vibration, noise and vibration attenuators, biomechanics and bioacoustics. The book also discusses analytical, numerical and experimental techniques applicable to analyze linear and non-linear noise and vibration problems (including strong nonlinearity) and it is primarily intended to emphasize the actual trends and state-of-the-art developments in the above mentioned topics. The primary audience of this book consist of academics, researchers and professionals, as well as PhD students concerned with various fields of acoustics and vibration of mechanical structures.

Acoustics and Vibration of Mechanical Structures—AVMS-2017: Proceedings of the 14th AVMS Conference, Timisoara, Romania, May 25–26, 2017 (Springer Proceedings in Physics #198)

by Nicolae Herisanu Vasile Marinca

This book is a collection of papers presented at Acoustics and Vibration of Mechanical Structures 2017 - AVMS 2017 - highlighting the current trends and state-of-the-art developments in the field. It covers a broad range of topics, such as noise and vibration control, noise and vibration generation and propagation, the effects of noise and vibration, condition monitoring and vibration testing, modeling, prediction and simulation of noise and vibration, environmental and occupational noise and vibration, noise and vibration attenuators, as well as biomechanics and bioacoustics. The book also presents analytical, numerical and experimental techniques for evaluating linear and non-linear noise and vibration problems (including strong nonlinearity). It is primarily intended for academics, researchers and professionals, as well as PhD students in various fields of the acoustics and vibration of mechanical structures.

Acoustics and Vibration of Mechanical Structures—AVMS 2019: Proceedings of the 15th AVMS, Timisoara, Romania, May 30–31, 2019 (Springer Proceedings in Physics #251)

by Nicolae Herisanu Vasile Marinca

This book contains selected and expanded contributions presented at the 15th Conference on Acoustics and Vibration of Mechanical Structures held in Timisoara, Romania, May 30-31, 2019. The conference focused on a broad range of topics related to acoustics and vibration, such as analytical approaches to nonlinear noise and vibration problems, environmental and occupational noise, structural vibration, biomechanics and bioacoustics, as well as experimental approaches to vibration problems in industrial processes. The different contributions also address the analytical, numerical and experimental techniques applicable to analyze linear and non-linear noise and vibration problems (including strong nonlinearity) and they are primarily intended to emphasize the actual trends and state-of-the-art developments in the above mentioned topics. The book is meant for academics, researchers and professionals, as well as PhD students concerned with various fields of acoustics and vibration of mechanical structures.

Acoustics and Vibration of Mechanical Structures—AVMS-2023: Proceedings of the 17th AVMS, Timişoara, Romania, May 26–27, 2023 (Springer Proceedings in Physics #302)

by Nicolae Herisanu Vasile Marinca

This book presents peer-reviewed and selected papers from the 17th Conference on Acoustics and Vibration of Mechanical Structures (AVMS) held in Timisoara, Romania, on 26–27 May 2023. Internationally recognized experts share their knowledge and key findings in a broad range of topics related to acoustics and vibration of mechanical structures such as analytical, numerical and experimental techniques for noise and vibration problems, environmental and occupational noise and vibration, modelling, prediction and simulations of noise and vibration, noise and vibration control, noise and vibration attenuators. The book addresses application studies and fundamental studies as well, and it is meant for academics researchers and professionals, as well as Ph.D. students concerned with various fields of acoustics and vibration of mechanical structures.

Refine Search

Showing 826 through 850 of 73,122 results