- Table View
**List View**

## Spatio-Temporal Data Analytics for Wind Energy Integration

by Vijay Vittal Lei Yang Junshan Zhang Miao HeThis SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are carefully examined. A spatio-temporal analysis approach enables the authors to develop Markov-chain-based short-term forecasts of wind farm power generation. To deal with the wind ramp dynamics, a support vector machine enhanced Markov model is introduced. The stochastic optimization of economic dispatch (ED) and interruptible load management are investigated as well. Spatio-Temporal Data Analytics for Wind Energy Integration is valuable for researchers and professionals working towards renewable energy integration. Advanced-level students studying electrical, computer and energy engineering should also find the content useful.

## Spatio-temporal Design

by Werner G. Müller Jorge MateuA state-of-the-art presentation of optimum spatio-temporal sampling design - bridging classic ideas with modern statistical modeling concepts and the latest computational methods.Spatio-temporal Design presents a comprehensive state-of-the-art presentation combining both classical and modern treatments of network design and planning for spatial and spatio-temporal data acquisition. A common problem set is interwoven throughout the chapters, providing various perspectives to illustrate a complete insight to the problem at hand.Motivated by the high demand for statistical analysis of data that takes spatial and spatio-temporal information into account, this book incorporates ideas from the areas of time series, spatial statistics and stochastic processes, and combines them to discuss optimum spatio-temporal sampling design.Spatio-temporal Design: Advances in Efficient Data Acquisition:Provides an up-to-date account of how to collect space-time data for monitoring, with a focus on statistical aspects and the latest computational methodsDiscusses basic methods and distinguishes between design and model-based approaches to collecting space-time data.Features model-based frequentist design for univariate and multivariate geostatistics, and second-phase spatial sampling.Integrates common data examples and case studies throughout the book in order to demonstrate the different approaches and their integration. Includes real data sets, data generating mechanisms and simulation scenarios.Accompanied by a supporting website featuring R code. Spatio-temporal Design presents an excellent book for graduate level students as well as a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.

## Spatiotemporal Data Analysis

by Gidon EshelA severe thunderstorm morphs into a tornado that cuts a swath of destruction through Oklahoma. How do we study the storm's mutation into a deadly twister? Avian flu cases are reported in China. How do we characterize the spread of the flu, potentially preventing an epidemic? The way to answer important questions like these is to analyze the spatial and temporal characteristics--origin, rates, and frequencies--of these phenomena. This comprehensive text introduces advanced undergraduate students, graduate students, and researchers to the statistical and algebraic methods used to analyze spatiotemporal data in a range of fields, including climate science, geophysics, ecology, astrophysics, and medicine. Gidon Eshel begins with a concise yet detailed primer on linear algebra, providing readers with the mathematical foundations needed for data analysis. He then fully explains the theory and methods for analyzing spatiotemporal data, guiding readers from the basics to the most advanced applications. This self-contained, practical guide to the analysis of multidimensional data sets features a wealth of real-world examples as well as sample homework exercises and suggested exams.

## Spatiotemporal Modeling of Cancer Immunotherapy: Partial Differential Equation Analysis in R

by William E. SchiesserThe focus of this book is a detailed discussion of a dual cancer vaccine (CV)-immune checkpoint inhibitor (ICI) mathematical model formulated as a system of partial differential equations (PDEs) defining the spatiotemporal distribution of cells and biochemicals during tumor growth.A computer implementation of the model is discussed in detail for the quantitative evaluation of CV-ICI therapy. The coding (programming) consists of a series of routines in R, a quality, open-source scientific computing system that is readily available from the internet. The routines are based on the method of lines (MOL), a general PDE algorithm that can be executed on modest computers within the basic R system. The reader can download and use the routines to confirm the model solutions reported in the book, then experiment with the model by varying the parameters and modifying/extending the equations, and even studying alternative models with the PDE methodology demonstrated by the CV-ICI model.Spatiotemporal Modeling of Cancer Immunotherapy: Partial Differential Equation Analysis in R facilitates the use of the model, and more generally, computer- based analysis of cancer immunotherapy mathematical models, as a step toward the development and quantitative evaluation of the immunotherapy approach to the treatment of cancer.

## Spear Operators Between Banach Spaces (Lecture Notes in Mathematics #2205)

by Vladimir Kadets Miguel Martín Javier Merí Antonio PérezThis monograph is devoted to the study of spear operators, that is, bounded linear operators $G$ between Banach spaces $X$ and $Y$ satisfying that for every other bounded linear operator $T:X\longrightarrow Y$ there exists a modulus-one scalar $\omega$ such that$\|G + \omega\,T\|=1+ \|T\|$.This concept extends the properties of the identity operator in those Banach spaces having numerical index one. Many examples among classical spaces are provided, being one of them the Fourier transform on $L_1$. The relationships with the Radon-Nikodým property, with Asplund spaces and with the duality, and some isometric and isomorphic consequences are provided. Finally, Lipschitz operators satisfying the Lipschitz version of the equation above are studied. The book could be of interest to young researchers and specialists in functional analysis, in particular to those interested in Banach spaces and their geometry. It is essentially self-contained and only basic knowledge of functional analysis is needed.

## Special Functions

by Richard Beals Roderick WongSpecial functions and q-series are currently very active areas of research which overlap with many other areas of mathematics, such as representation theory, classical and quantum groups, affine Lie algebras, number theory, harmonic analysis, and mathematical physics. This book presents the state-of-the-art of the subject and its applications.

## Special Functions and Analysis of Differential Equations

by Praveen Agarwal, Ravi P. Agarwal and Michael RuzhanskyDifferential Equations are very important tools in Mathematical Analysis. They are widely found in mathematics itself and in its applications to statistics, computing, electrical circuit analysis, dynamical systems, economics, biology, and so on. Recently there has been an increasing interest in and widely-extended use of differential equations and systems of fractional order (that is, of arbitrary order) as better models of phenomena in various physics, engineering, automatization, biology and biomedicine, chemistry, earth science, economics, nature, and so on. Now, new unified presentation and extensive development of special functions associated with fractional calculus are necessary tools, being related to the theory of differentiation and integration of arbitrary order (i.e., fractional calculus) and to the fractional order (or multi-order) differential and integral equations. This book provides learners with the opportunity to develop an understanding of advancements of special functions and the skills needed to apply advanced mathematical techniques to solve complex differential equations and Partial Differential Equations (PDEs). Subject matters should be strongly related to special functions involving mathematical analysis and its numerous applications. The main objective of this book is to highlight the importance of fundamental results and techniques of the theory of complex analysis for differential equations and PDEs and emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Specific topics include but are not limited to Partial differential equations Least squares on first-order system Sequence and series in functional analysis Special functions related to fractional (non-integer) order control systems and equations Various special functions related to generalized fractional calculus Operational method in fractional calculus Functional analysis and operator theory Mathematical physics Applications of numerical analysis and applied mathematics Computational mathematics Mathematical modeling This book provides the recent developments in special functions and differential equations and publishes high-quality, peer-reviewed book chapters in the area of nonlinear analysis, ordinary differential equations, partial differential equations, and related applications.

## Special Functions and Generalized Sturm-Liouville Problems (Frontiers in Mathematics)

by Mohammad Masjed-JameiThis book discusses theoretical and applied aspects of Sturm-Liouville theory and its generalization. It introduces and classifies generalized Sturm-Liouville problems in three different spaces: continuous, discrete, and q-discrete spaces, focusing on special functions that are solutions of a regular or singular Sturm-Liouville problem. Further, it describes the conditions under which the usual Sturm-Liouville problems with symmetric solutions can be extended to a larger class, particularly highlighting the solutions of generalized problems that result in new orthogonal sequences of continuous or discrete functions.Sturm-Liouville theory is central to problems in many areas, such as engineering, mathematics, physics, and biology. This accessibly written book on the topic is a valuable resource for a broad interdisciplinary readership, from novices to experts.

## Special Functions and Orthogonal Polynomials

by Richard Beals Roderick WongThe subject of special functions is often presented as a collection of disparate results, rarely organized in a coherent way. This book emphasizes general principles that unify and demarcate the subjects of study. The authors' main goals are to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more. It shows how much of the subject can be traced back to two equations - the hypergeometric equation and confluent hypergeometric equation - and it details the ways in which these equations are canonical and special. There is extended coverage of orthogonal polynomials, including connections to approximation theory, continued fractions, and the moment problem, as well as an introduction to new asymptotic methods. There are also chapters on Meijer G-functions and elliptic functions. The final chapter introduces Painlevé transcendents, which have been termed the 'special functions of the twenty-first century'.

## Special Functions of Mathematical (Applied and Numerical Harmonic Analysis)

by Willi Freeden Martin GuttingSpecial functions enable us to formulate a scientific problem by reduction such that a new, more concrete problem can be attacked within a well-structured framework, usually in the context of differential equations. A good understanding of special functions provides the capacity to recognize the causality between the abstractness of the mathematical concept and both the impact on and cross-sectional importance to the scientific reality. The special functions to be discussed in this monograph vary greatly, depending on the measurement parameters examined (gravitation, electric and magnetic fields, deformation, climate observables, fluid flow, etc.) and on the respective field characteristic (potential field, diffusion field, wave field). The differential equation under consideration determines the type of special functions that are needed in the desired reduction process. Each chapter closes with exercises that reflect significant topics, mostly in computational applications. As a result, readers are not only directly confronted with the specific contents of each chapter, but also with additional knowledge on mathematical fields of research, where special functions are essential to application. All in all, the book is an equally valuable resource for education in geomathematics and the study of applied and harmonic analysis. Students who wish to continue with further studies should consult the literature given as supplements for each topic covered in the exercises.

## Special Functions, Partial Differential Equations, and Harmonic Analysis

by Constantine Georgakis Alexander M. Stokolos Wilfredo UrbinaThis volume of papers presented at the conference in honor of Calixto P. Calderón by his friends, colleagues, and students is intended to make the mathematical community aware of his important scholarly and research contributions in contemporary Harmonic Analysis and Mathematical Models applied to Biology and Medicine, and to stimulate further research in the future in this area of pure and applied mathematics.

## Special Functions & Their Applications (Dover Books on Mathematics)

by N. N. Lebedev Richard R. SilvermanRichard Silverman's new translation makes available to English readers the work of the famous contemporary Russian mathematician N. N. Lebedev. Though extensive treatises on special functions are available, these do not serve the student or the applied mathematician as well as Lebedev's introductory and practically oriented approach. His systematic treatment of the basic theory of the more important special functions and the applications of this theory to specific problems of physics and engineering results in a practical course in the use of special functions for the student and for those concerned with actual mathematical applications or uses. In consideration of the practical nature of the coverage, most space has been devoted to the application of cylinder functions and particularly of spherical harmonics. Lebedev, however, also treats in some detail: the gamma function, the probability integral and related functions, the exponential integral and related functions, orthogonal polynomials with consideration of Legendre, Hermite and Laguerre polynomials (with exceptional treatment of the technique of expanding functions in series of Hermite and Laguerre polynomials), the Airy functions, the hypergeometric functions (making this often slighted area accessible to the theoretical physicist), and parabolic cylinder functions. The arrangement of the material in the separate chapters, to a certain degree, makes the different parts of the book independent of each other. Although a familiarity with complex variable theory is needed, a serious attempt has been made to keep to a minimum the required background in this area. Various useful properties of the special functions which do not appear in the text proper will be found in the problems at the end of the appropriate chapters. This edition closely adheres to the revised Russian edition (Moscow, 1965). Richard Silverman, however, has made the book even more useful to the English reader. The bibliography and references have been slanted toward books available in English or the West European languages, and a number of additional problems have been added to this edition.

## Special Matrices and Their Applications in Numerical Mathematics: Second Edition

by Miroslav FiedlerThis revised and corrected second edition of a classic book on special matrices provides researchers in numerical linear algebra and students of general computational mathematics with an essential reference.Author Miroslav Fiedler, a Professor at the Institute of Computer Science of the Academy of Sciences of the Czech Republic, Prague, begins with definitions of basic concepts of the theory of matrices and fundamental theorems. In subsequent chapters, he explores symmetric and Hermitian matrices, the mutual connections between graphs and matrices, and the theory of entrywise nonnegative matrices. After introducing M-matrices, or matrices of class K, Professor Fiedler discusses important properties of tensor products of matrices and compound matrices and describes the matricial representation of polynomials. He further defines band matrices and norms of vectors and matrices. The final five chapters treat selected numerical methods for solving problems from the field of linear algebra, using the concepts and results explained in the preceding chapters.

## Special Needs and Drug Education (nasen spotlight)

by Richard IvesTaking drugs is complex and there are concerns about the best ways of addressing drugs issues in schools - particularly for pupils with special educational needs. Many teachers are worried about discussing drugs with their pupils. They fear that they know too little and that some of their pupils may know too much. They also worry that talking about drugs to naive children may raise their interest. Yet the government expects all pupils to receive drug education and requires all schools to have a drug policy. It has ambitious targets in reducing the use of drugs by young people. This book aims to help teachers of pupils with special educational needs to assess what their contribution should be and identify what the particular issues associated with their pupils are. It will help schools to: create or revise a drugs policy plan a program of study deliver drug education appropriate to their pupils deal with drug related incident.

## Special Relativity

by Valerio FaraoniThis book offers an essential bridge between college-level introductions and advanced graduate-level books on special relativity. It begins at an elementary level, presenting and discussing the basic concepts normally covered in college-level works, including the Lorentz transformation. Subsequent chapters introduce the four-dimensional worldview implied by the Lorentz transformations, mixing time and space coordinates, before continuing on to the formalism of tensors, a topic usually avoided in lower-level courses. The book's second half addresses a number of essential points, including the concept of causality; the equivalence between mass and energy, including applications; relativistic optics; and measurements and matter in Minkowski spacetime. The closing chapters focus on the energy-momentum tensor of a continuous distribution of mass-energy and its covariant conservation; angular momentum; a discussion of the scalar field of perfect fluids and the Maxwell field; and general coordinates. Every chapter is supplemented by a section with numerous exercises, allowing readers to practice the theory. These exercises constitute an essential part of the textbook, and the solutions to approximately half of them are provided in the appendix.

## Special Relativity: An Introduction with 200 Problems and Solutions (Undergraduate Lecture Notes in Physics)

by Michael TsamparlisThis textbook develops Special Relativity in a systematic way and offers the unique feature of having more than 200 problems with detailed solutions to empower students to gain a real understanding of this core subject in physics. This new edition has been thoroughly updated and has new sections on relativistic fluids, relativistic kinematics and on four-acceleration. The problems and solution section has been significantly expanded and short history sections have been included throughout the book.The approach is structural in the sense that it develops Special Relativity in Minkowski space following the parallel steps as the development of Newtonian Physics in Euclidian space. A second characteristic of the book is that it discusses the mathematics of the theory independently of the physical principles, so that the reader will appreciate their role in the development of the physical theory.The book is intended to be used both as a textbook for an advanced undergraduate teaching course in Special Relativity but also as a reference book for the future. In that respect it is linked to an online repository with more than 200 problems, carefully classified according to subject area and solved in detail, providing an independent problem book on Special Relativity.

## Special Relativity in General Frames: From Particles to Astrophysics

by Éric GourgoulhonSpecial relativity is the basis of many fields in modern physics: particle physics, quantum field theory, high-energy astrophysics, etc. This theory is presented here by adopting a four-dimensional point of view from the start. An outstanding feature of the book is that it doesn't restrict itself to inertial frames and to considering accelerated and rotating observers. It is thus possible to treat physical effects such as the Thomas precession or the Sagnac effect in a simple yet precise manner. In the final chapters, more advanced topics like tensorial fields in spacetime, exterior calculus and relativistic hydrodynamics are addressed. In the last, brief chapter the author gives a preview of gravity and shows where it becomes incompatible with Minkowsky spacetime. Well illustrated and enriched by many historical notes, this book also presents many applications of special relativity, ranging from particle physics (accelerators, particle collisions, quark-gluon plasma) to astrophysics (relativistic jets, active galactic nuclei), and including practical applications (Sagnac gyrometers, synchrotron radiation, GPS). In addition, the book provides some mathematical developments, such as the detailed analysis of the Lorentz group and its Lie algebra. The book is suitable for students in the third year of a physics degree or on a masters course, as well as researchers and any reader interested in relativity. Thanks to the geometric approach adopted, this book should also be beneficial for the study of general relativity. "A modern presentation of special relativity must put forward its essential structures, before illustrating them using concrete applications to specific dynamical problems. Such is the challenge (so successfully met!) of the beautiful book by Éric Gourgoulhon." (excerpt from the Foreword by Thibault Damour)

## Special Sciences and the Unity of Science

by Shahid Rahman Olga Pombo John Symons Juan Manuel TorresScience is a dynamic process in which the assimilation of new phenomena, perspectives, and hypotheses into the scientific corpus takes place slowly. The apparent disunity of the sciences is the unavoidable consequence of this gradual integration process. Some thinkers label this dynamical circumstance a 'crisis'. However, a retrospective view of the practical results of the scientific enterprise and of science itself, grants us a clear view of the unity of the human knowledge seeking enterprise. This book provides many arguments, case studies and examples in favor of the unity of science. These contributions touch upon various scientific perspectives and disciplines such as: Physics, Computer Science, Biology, Neuroscience, Cognitive Psychology, and Economics.

## The Special Theory of Relativity: Einstein’s World in New Axiomatics

by Helmut Günther Volker MüllerThis book discusses in detail the special theory of relativity without including all the instruments of theoretical physics, enabling readers who are not budding theoretical physicists to develop competence in the field. An arbitrary but fixed inertial system is chosen, where the known velocity of light is measured. With respect to this system a moving clock loses time and a moving length contracts. The book then presents a definition of simultaneity for the other inertial frames without using the velocity of light. To do so it employs the known reciprocity principle, which in this context serves to provide a definition of simultaneity in the other inertial frames. As a consequence, the Lorentz transformation is deduced and the universal constancy of light is established. With the help of a lattice model of the special theory of relativity the book provides a deeper understanding of the relativistic effects. Further, it discusses the key STR experiments and formulates and solves 54 problems in detail.

## The Special Theory of Relativity

by Farook RahamanThe book expounds the major topics in the special theory of relativity. It provides a detailed examination of the mathematical foundation of the special theory of relativity, relativistic mass, relativistic mechanics and relativistic electrodynamics. As well as covariant formulation of relativistic mechanics and electrodynamics, the book discusses the relativistic effect on photons. Using a mathematical approach, the text offers graduate students a clear, concise view of the special theory of relativity. Organized into 14 chapters and two appendices, the content is presented in a logical order, and every topic has been dealt with in a simple and lucid manner. To aid understanding of the subject, the book provides numerous relevant worked examples in every chapter. The book's mathematical approach helps students in their independent study and motivates them to research the topic further.

## Specialization of Quadratic and Symmetric Bilinear Forms

by Thomas Unger Manfred KnebuschThe specialization theory of quadratic and symmetric bilinear forms over fields and the subsequent generic splitting theory of quadratic forms were invented by the author in the mid-1970's. They came to fruition in the ensuing decades and have become an integral part of the geometric methods in quadratic form theory. This book comprehensively covers the specialization and generic splitting theories. These theories, originally developed for fields of characteristic different from 2, are explored here without this restriction. In addition to chapters on specialization theory, generic splitting theory and their applications, the book contains a final chapter containing research never before published on specialization with respect to quadratic places and will provide the reader with a glimpse towards the future.

## Spectral Action in Noncommutative Geometry (Springerbriefs In Mathematical Physics Ser. #27)

by Michał Eckstein Bruno IochumWhat is spectral action, how to compute it and what are the known examples? This book offers a guided tour through the mathematical habitat of noncommutative geometry à la Connes, deliberately unveiling the answers to these questions.After a brief preface flashing the panorama of the spectral approach, a concise primer on spectral triples is given. Chapter 2 is designed to serve as a toolkit for computations. The third chapter offers an in-depth view into the subtle links between the asymptotic expansions of traces of heat operators and meromorphic extensions of the associated spectral zeta functions. Chapter 4 studies the behaviour of the spectral action under fluctuations by gauge potentials. A subjective list of open problems in the field is spelled out in the fifth Chapter. The book concludes with an appendix including some auxiliary tools from geometry and analysis, along with examples of spectral geometries.The book serves both as a compendium for researchers in the domain of noncommutative geometry and an invitation to mathematical physicists looking for new concepts.

## Spectral and Dynamical Stability of Nonlinear Waves

by Keith Promislow Todd KapitulaThis book unifies the dynamical systems and functional analysis approaches to the linear and nonlinear stability of waves. It synthesizes fundamental ideas of the past 20+ years of research, carefully balancing theory and application. The book isolates and methodically develops key ideas by working through illustrative examples that are subsequently synthesized into general principles. Many of the seminal examples of stability theory, including orbital stability of the KdV solitary wave, and asymptotic stability of viscous shocks for scalar conservation laws, are treated in a textbook fashion for the first time. It presents spectral theory from a dynamical systems and functional analytic point of view, including essential and absolute spectra, and develops general nonlinear stability results for dissipative and Hamiltonian systems. The structure of the linear eigenvalue problem for Hamiltonian systems is carefully developed, including the Krein signature and related stability indices. The Evans function for the detection of point spectra is carefully developed through a series of frameworks of increasing complexity. Applications of the Evans function to the Orientation index, edge bifurcations, and large domain limits are developed through illustrative examples. The book is intended for first or second year graduate students in mathematics, or those with equivalent mathematical maturity. It is highly illustrated and there are many exercises scattered throughout the text that highlight and emphasize the key concepts. Upon completion of the book, the reader will be in an excellent position to understand and contribute to current research in nonlinear stability.

## Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012

by Jan S. Hesthaven Mejdi Azaïez Henda El FekihThe book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2012), and provides an overview of the depth and breath of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.

## Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014

by Jan S. Hesthaven Robert M. Kirby Martin BerzinsThe book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2014), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of papers will provide the reader with a snapshot of the state-of-the-art and help initiate new research directions through the extensive biography.