Browse Results

Showing 1 through 25 of 13,454 results

الرسالة المستطرقة فى علوم الحديث

by محمد بن جعفر الكتاني

وقد قال ‏(‏ابن حجر‏)‏ في أول ‏(‏مقدمة فتح الباري‏)‏ ما نصه‏:‏ اعلم أن آثار النبي ـ صلى الله عليه وسلم ـ لم تكن في عصر الصحابة وكبار التابعين مدونة في الجوامع، ولا مرتبه، لأمرين‏:‏ أحدهما‏:‏ أنهم كانوا في ابتداء الحال قد نهوا عن ذلك، كما ثبت في ‏(‏صحيح مسلم‏)‏، خشية أن يختلط بعض ذلك بالقرآن العظيم‏.‏ وثانيهما‏:‏ لسعة حفظهم، وسيلان أذهانهم، ولأن أكثرهم كانوا لا يعرفون الكتابة‏.‏ ثم حدث في أواخر عصر التابعين تدوين الآثار، وتبويب الأخبار، لمّا انتشر العلماء في الأمصار، وكثر الابتداع من الخوارج والروافض ومنكري الأقدار، واتسع الخرق على الراقع، وكاد أن يلتبس الباطل بالحق‏.‏ فأول من جمع في ذلك ‏(‏الربيع بن صبيح‏)‏ ‏(‏وسعيد ابن أبي عروبة‏)‏ وغيرهما‏.‏ دونت أحكام الحديث في منتصف القرن الثاني وكانوا يصنفون كل باب على حده، إلى أن قام كبار أهل الطبقة الثانية في منتصف القرن ‏(‏ص 6‏)‏ الثاني، فدونوا الأحكام‏.‏ فصنف ‏(‏الإمام مالك‏)‏ ‏(‏الموطأ‏)‏ بالمدينة، وتوخى فيه القوي من حديث أهل الحجاز، ومزجه بأقوال الصحابة، وفتاوى التابعين، ومن بعدهم‏.‏ أول من صنف الحديث بمكة ابن جريج وصنف ‏(‏أبو محمد عبد الملك بن عبد العزيز بن جريج‏)‏ بمكة، ‏(‏وأبو عمرو عبد الرحمن بن عمرو الأوزاعي‏)‏ بالشام، ‏(‏وأبو عبد الله سفيان بن سعيد الثوري‏)‏ بالكوفة، ‏(‏وأبو سلمة حماد بن سلمة بن دينار‏)‏ بالبصرة‏.‏ ثم تلاهم كثير من أهل عصرهم في النسج على منوالهم، إلى أن رأى بعض الأئمة منهم، أن يفرد حديث النبي ـ صلى الله عليه وسلم ـ خاصة، وذلك على رأس المائتين‏.‏ فصنف ‏(‏عبيد الله بن موسى العبسي الكوفي‏)‏ مسندا، وصنف ‏(‏مسدد بن مسرهد البصري‏)‏ مسندا، وصنف ‏(‏أسد بن موسى الأموي‏)‏ مسندا، وصنف ‏(‏نُعيم بن حماد الخزاعي‏)‏ نزيل مصر مسندا، ثم اقتفى الأئمة بعد ذلك أثرهم، فقلَّ إمام من الحفاظ إلا وصنف حديثه على المسانيد، ‏(‏كالإمام أحمد بن حنبل‏)‏ ‏(‏و إسحاق بن راهويه‏)‏ ‏(‏وعثمان بن أبي شيبة‏)‏ وغيرهم من النبلاء‏.‏ ومنهم من صنف على الأبواب والمسانيد معا ‏(‏كأبي بكر بن أبي شيبة‏)‏ اهـ‏.‏ وعبارته في ‏(‏إرشاد الساري‏)‏ قال‏:‏ منهم من رتب على المسانيد ‏(‏كالإمام أحمد بن حنبل‏)‏ ‏(‏و إسحاق بن راهويه‏)‏ ‏(‏وأبي بكر ابن أبي شيبة‏)‏ ‏(‏وأحمد بن منيع‏)‏ ‏(‏وأبي خيثمة‏)‏ ‏(‏والحسن بن سفيان‏)‏ ‏(‏وأبي بكر البزار‏)‏ وغيرهم‏.‏ ومنهم من رتب على العلل‏:‏ بأن يجمع في كل متن طرقه، واختلاف الرواة فيه، بحيث يتضح إرسال ما يكون متصلا، أو وقف ما يكون مرفوعا، أو غير ذلك‏.‏ ومنهم من رتب على الأبواب الفقهية، وغيرها، ونوّعه أنواعا، وجمع ما ورد في كل نوع، وفي كل حكم إثباتا ونفيا، في باب فباب، بحيث يتميز ما يدخل في الصوم مثلا عما يتعلق بالصلاة‏.‏ وأهل هذه الطريقة منهم من تقيد بالصحيح ‏(‏كالشيخين‏)‏ وغيرهما، ومنهم من لم يتقيد بذلك كباقي الكتب الستة، وكان أول من صنف في الصحيح ‏(‏محمد بن إسماعيل البخاري‏)‏‏.‏ ومنهم المقتصر على ‏(‏ص 7‏)‏ الأحاديث المتضمنة للترغيب والترهيب، ومنهم من حذف الإسناد واقتصر على المتن فقط، ‏(‏كالبغوي‏)‏ في ‏(‏مصابيحه‏)‏ ‏(‏واللؤلؤي‏)‏ في ‏(‏مشكاته‏)‏ اهـ‏.‏

الأخلاق والسير في مداواة النفوس

by أبي محمد علي بن حزم الأندلسي الظاهري

قد جمعت في كتابي هذا معان كثيرة أفادنيها واهب التمييز تعالى بمرور الأيام وتعاقب الأحوال بما منحني عز وجل من التهمم بتصاريف الزمان والإشراف على أحواله حتى أنفقت في ذلك أكثر عمري وآثرت تقييد ذلك بالمطالعة له والفكرة فيه على جميع اللذات التي تميل إليها أكثر النفوس وعلى الازدياد من فضول المال ورقمت كل ما سبرت من ذلك بهذا الكتاب لينفع الله تعالى به من شاء من عباده ممن يصل إليه ما أتعبت فيه نفسي واجهدتها فيه واطلت فيه فكري فيأخذه عفوا وأهديته إليه هنيئا فيكون ذلك أفضل له من كنوز المال وعقد الأملاك إذا تدبره ويسره الله تعلي لاستعماله. وانا راج في ذلك من الله تعالي أعظم الأجر لنيتي في نفع عباده وإصلاح ما فسد من أخلاقهم ومداواة علل نفوسهم وبالله تعالى استعين وحسبنا الله ونعم الوكيل

الشغل، الشغل! لا ينتهي، أو يكتمل

by رٍجينا بروكس

يستمتع الأطفال باللعب وتمضية أوقاتهم في المتنزهات والحدائق. لكنهم يضطرون أحياناً للقيام ببعض الأعمال المنزلية قبل تمكنهم من الذهاب إلى المتنزه. وعلى الرغم من أن القيام بهذه الأعمال ليس بمتعة اللعب أو الذهاب إلى المتنزه, إلا أن الأطفال يحتاجون لاستيعاب فكرة أن هذه الأعمال يجب أن تتم على أية حال, وأن إنجازها قد يكون شرطاً للحصول على وقت للعب. فالكتاب يروي قصة طفلة وعدتها أمها أن تأخذها للمتنزه في عطلة نهاية الأسبوع, ولكن ليس قبل أن تنتهي من إنجاز بعض الأعمال لمساعدة أمها في البيت. تقوم الطفلة بالأعمال الصغيرة المختلفة وهي تتذمر من هذا الشغل الذي لا ينتهي, بينما تحاول الأم جعلها تفكر بطريقة إيجابية وأن تتذكر بأنها ستذهب للمتنزه حال الانتهاء من هذه الأعمال. وحين تنتهي الطفلة من شغل المنزل, تأتي إليها الأم مرة أخرى لتريها بأن عملها في البيت كان جميلاً, وبأنها استحقت نجمة عن كل عمل قامت به.

الفصل في الملل و الآهواء و النحل

by ابن حزم

إن كثيراً من الناس كتبوا في افتراق الناس في دياناتهم ومقالاتهم كتباً كثيرة جداً فبعض أطال وأسهب وأكثر وهجر واستعمل الأغاليط والشغب فكان ذلك شاغلاً عن الفهم قاطعاً دون العلم وبعض حذف وقصر وقلل واختصر واضرب عن كثير من قوي معارضات أصحاب المقالات فكان في ذلك غير منصف لنفسه في أن يرضى لها بالغبن في الإبانة وظالماً لخصمه في أن لم يوفه حق اعتراضه وباخساً حق من قرأ كتابه إذ لم يغنه عن غيره وكلهم إلا تحلة القسم عقد كلامه تعقيداً يتعذر فهمه على كثير من أهل الفهم وحلق على المعاني من بعد حتى صار ينسي آخر كلامه أوله وأكثر هذا منهم ستائر دون فساد معانيهم فكان هذا منهم غير محمود في عاجله وآجله.

1 Big Salad: A Delicious Counting Book

by Juana Medina

<p>Juana Medina's ingenious illustrations nearly pop off the page in her new counting book, ONE BIG SALAD. One avocado deer saunters across the spread, two radish mice scurry by, until finally ten clementine kitties prance onto the scene - all of the ingredients in one big salad! <p>Medina's previous book with Viking, SMICK!, introduced her to the children's book world, and now she's bringing her fresh and innovative take on the concept book form.</p>

1 Mississippi 2 Mississippi: A Mississippi Number Book

by Michael Shoulders

1 Mississippi, 2 Mississippi is a fitting follow-up to its companion state alphabet book. This fun, colorful, and superbly informative book teaches children about numbers using recognizable places, events, and facts from their respective states. Numbers throughout the books are explained with simple rhyme for younger children and are accompanied by detailed expository text for older learners.

10 Little Sock Monkeys

by Harriet Ziefert

Ten little monkeys are swinging on a bar. Two by two, these creatures drop away, while all the rest continue to play.

10 Tiny Puppies: A Counting Book

by V. C. Graham

10 tiny puppies help children learn to count.

100 Commonly Asked Questions in Math Class: Answers That Promote Mathematical Understanding, Grades 6-12

by Alfred S. Posamentier Bernd Thaller Terri L. Germain-Williams William L. Farber Elaine S. Paris Ingmar H. Lehmann

100 ways to get students hooked on math! That one question got you stumped? Or maybe you have the answer, but it’s not all that compelling. Al Posamentier and his coauthors to the rescue with this handy reference containing fun answers to students’100 most frequently asked math questions. Even if you already have the answers, Al’s explanations are certain to keep kids hooked. The big benefits? You’ll discover high-interest ways to Teach to the Common Core’s math content standards Promote inquiry and process in mathematical thinking Build procedural skills and conceptual understanding Encourage flexibility in problem solving Emphasize efficient test-taking strategies

100 Day

by Anastasia Suen Christine Powers

<p>A class of kindergarten children celebrate the 100th day of school. <p>Guided Reading: C; Interest Level: Grades 1 - 1; Reading Level: Grades 1 - 1; Themes: Comparing/Classifying/Measuring, Counting Money/Everyday Math, Classroom Activities, Multi-ethnic interest, Games/Toys, Education, Cultural Diversity, Childhood Experiences and Memories, Beginning Concepts, Realistic Fiction, Collaboration

100 Essential Things You Didn't Know You Didn't Know: Math Explains Your World

by John D. Barrow

"Where else does math become a romp, full of entertaining tricks and turns?"--Bryce Christensen, Booklist Have you ever considered why you always get stuck in the longest line? Why two's company but three's a crowd? Or why there are six degrees of separation instead of seven? In this hugely informative and endlessly entertaining book, John D. Barrow takes the most baffling of everyday phenomena and--with simple math, lucid explanations, and illustrations--explains why they work the way they do. His witty, crystal-clear answers shed light on the dark and shadowy corners of the physical world we all think we understand so well.

100 Essential Things You Didn't Know You Didn't Know about Math and the Arts

by John D. Barrow

A fascinating exploration of math's connection to the arts. At first glance, the worlds of math and the arts might not seem like comfortable neighbors. But as mathematician John D. Barrow points out, they have a strong and natural affinity--after all, math is the study of all patterns, and the world of the arts is rich with pattern. Barrow whisks us through 100 thought-provoking and often whimsical intersections between math and many arts, from the golden ratios of Mondrian's rectangles and the curious fractal-like nature of Pollock's drip paintings to ballerinas' gravity-defying leaps and the next generation of monkeys on typewriters tackling Shakespeare. For those of us with our feet planted more firmly on the ground, Barrow also wields everyday equations to reveal how many guards are needed in an art gallery or where you should stand to look at sculptures. From music and drama to literature and the visual arts, Barrow's witty and accessible observations are sure to spark the imaginations of math nerds and art aficionados alike.

100 Geometric Games

by Martin Gardner Pierre Berloquin Denis Dugas

There are three loops in a tangle of rope. How many are independent, and how many are interlocked?Two knights stand on a chessboard. How many other knights must you add so that each square is occupied or threatened by a knight?Among six seemingly identical drawings of mandalas, each rotated by multiples of 60 degrees, one is different. Which is it, and why?Challenge yourself with these mind-benders, brainteasers, and puzzles. Each of them has been carefully selected so that none will be too tough for anyone without a math background - but they're not too easy. Some are original, and all are clearly and accurately answered at the back of the book.

100 Great Problems of Elementary Mathematics

by Heinrich Dörrie

"The collection, drawn from arithmetic, algebra, pure and algebraic geometry and astronomy, is extraordinarily interesting and attractive." -- Mathematical GazetteThis uncommonly interesting volume covers 100 of the most famous historical problems of elementary mathematics. Not only does the book bear witness to the extraordinary ingenuity of some of the greatest mathematical minds of history -- Archimedes, Isaac Newton, Leonhard Euler, Augustin Cauchy, Pierre Fermat, Carl Friedrich Gauss, Gaspard Monge, Jakob Steiner, and many others -- but it provides rare insight and inspiration to any reader, from high school math student to professional mathematician. This is indeed an unusual and uniquely valuable book.The one hundred problems are presented in six categories: 26 arithmetical problems, 15 planimetric problems, 25 classic problems concerning conic sections and cycloids, 10 stereometric problems, 12 nautical and astronomical problems, and 12 maxima and minima problems. In addition to defining the problems and giving full solutions and proofs, the author recounts their origins and history and discusses personalities associated with them. Often he gives not the original solution, but one or two simpler or more interesting demonstrations. In only two or three instances does the solution assume anything more than a knowledge of theorems of elementary mathematics; hence, this is a book with an extremely wide appeal.Some of the most celebrated and intriguing items are: Archimedes' "Problema Bovinum," Euler's problem of polygon division, Omar Khayyam's binomial expansion, the Euler number, Newton's exponential series, the sine and cosine series, Mercator's logarithmic series, the Fermat-Euler prime number theorem, the Feuerbach circle, the tangency problem of Apollonius, Archimedes' determination of pi, Pascal's hexagon theorem, Desargues' involution theorem, the five regular solids, the Mercator projection, the Kepler equation, determination of the position of a ship at sea, Lambert's comet problem, and Steiner's ellipse, circle, and sphere problems.This translation, prepared especially for Dover by David Antin, brings Dörrie's "Triumph der Mathematik" to the English-language audience for the first time.

100 Numerical Games

by Martin Gardner Pierre Berloquin Denis Dugas

Follow the hour hand and minute hand of a clock for 24 hours. How many times do they form a right angle?Timothy's house has several rooms, each of which has an even number of doors, including doors that lead outside. Is the number of outside doors even or odd?Stimulating and delightful, this collection of puzzles features original and classic brainteasers. The author, a puzzle columnist for Le Monde, specially selected these mind-benders for the widest possible audience, ensuring that they're neither too hard for those without a math background nor too easy for the mathematically adept. All puzzles are clearly stated and accurately answered at the back of the book - and they're great fun to consider, whether you crack them or not. Includes a Foreword by Martin Gardner.

11th Chaotic Modeling and Simulation International Conference (Springer Proceedings in Complexity)

by Ihor Lubashevsky Christos H. Skiadas

Gathering the proceedings of the 11th CHAOS2018 International Conference, this book highlights recent developments in nonlinear, dynamical and complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences. The respective chapters address key methods, empirical data and computer techniques, as well as major theoretical advances in the applied nonlinear field. Beyond showcasing the state of the art, the book will help academic and industrial researchers alike apply chaotic theory in their studies.

11th International Conference on Practical Applications of Computational Biology & Bioinformatics (Advances in Intelligent Systems and Computing #616)

by Florentino Fdez-Riverola Juan F. De Paz Mohd Saberi Mohamad Miguel Rocha Tiago Pinto

Biological and biomedical research are increasingly driven by experimental techniques that challenge our ability to analyse, process and extract meaningful knowledge from the underlying data. The impressive capabilities of next-generation sequencing technologies, together with novel and constantly evolving, distinct types of omics data technologies, have created an increasingly complex set of challenges for the growing fields of Bioinformatics and Computational Biology. The analysis of the datasets produced and their integration call for new algorithms and approaches from fields such as Databases, Statistics, Data Mining, Machine Learning, Optimization, Computer Science and Artificial Intelligence. Clearly, Biology is more and more a science of information and requires tools from the computational sciences. In the last few years, we have seen the rise of a new generation of interdisciplinary scientists with a strong background in the biological and computational sciences. In this context, the interaction of researchers from different scientific fields is, more than ever, of foremost importance in boosting the research efforts in the field and contributing to the education of a new generation of Bioinformatics scientists. The PACBB'17 conference was intended to contribute to this effort and promote this fruitful interaction, with a technical program that included 39 papers spanning many different sub-fields in Bioinformatics and Computational Biology. Further, the conference promoted the interaction of scientists from diverse research groups and with a distinct background (computer scientists, mathematicians, biologists).

12 × 12 Schlüsselkonzepte zur Mathematik

by Oliver Deiser Caroline Lasser Elmar Vogt Dirk Werner

Wie ist ein Ring definiert, wann kann man Grenzprozesse vertauschen, was sind lineare Ordnungen und wozu benötigt man das Zornsche Lemma in der Linearen Algebra? Das Buch will seinen Lesern helfen, sich in der Fülle der grundlegenden mathematischen Definitionen zurecht zu finden und exemplarische mathematische Ergebnisse einordnen und ihre Eigenheiten verstehen zu können. Es behandelt hierzu je zwölf Schlüsselkonzepte der folgenden zwölf Themengebiete der Mathematik: Grundlagen Zahlen Zahlentheorie Diskrete Mathematik Lineare Algebra Algebra Elementare Analysis Höhere Analysis Topologie und Geometrie Numerik Stochastik Mengenlehre und Logik Ein besonderes Augenmerk liegt auf einer knappen und präzisen, dabei aber nicht zu formalen Darstellung. Dadurch erlauben die einzelnen Beiträge ein fokussiertes Nachlesen ebenso wie ein neugieriges Kennenlernen. Das Buch ist geschrieben für Studierende der Mathematik ab dem ersten Semester und möchte ein treuer Begleiter und eine zuverlässige Orientierungshilfe für das gesamte Studium sein. Die 2. Auflage ist vollständig durchgesehen und um Literaturangaben ergänzt.

12 Ways to Get to 11

by Eve Merriam

<p>1 2 3 4 5 6 7 8 9 10 __ 12 What happened to 11? <p>Is it in the magician's hat? Maybe it's in the mailbox or hiding in the jack-o'-lantern? Don't forget to look in the barnyard where the hen awaits the arrival of her new little chicks. Could that be where eleven went? <p>Eve Merriam and Bernie Karlin take young readers on a counting adventure as they demonstrate twelve witty and imaginative ways to get to eleven.</p>

123 Si!

by San Antonio Museum of Art

What better way to learn how to count than with eye-catching works of art? From fanciful folk Mexican puppets, Egyptian eyes, and lively masks to golden antiquities, Olmec era sculpture, and European paintings, children will become armchair world travelers while being introduced to the world of art and learning how to count from one to ten. This bilingual edition also introduces children at a young age to both English and Spanish.Art for this book was selected from the collection of the San Antonio Museum of Art, one of the leading art museums in the United States with a collection spanning a broad range of history and world cultures.

123 Si!

by San Antonio Museum of Art

What better way to learn how to count than with eye-catching works of art? From fanciful folk Mexican puppets, Egyptian eyes, and lively masks to golden antiquities, Olmec era sculpture, and European paintings, children will become armchair world travelers while being introduced to the world of art and learning how to count from one to ten. This bilingual edition also introduces children at a young age to both English and Spanish.Art for this book was selected from the collection of the San Antonio Museum of Art, one of the leading art museums in the United States with a collection spanning a broad range of history and world cultures.

14th International Probabilistic Workshop

by Robby Caspeele Luc Taerwe Dirk Proske

This book presents the proceedings of the 14th International Probabilistic Workshop that was held in Ghent, Belgium in December 2016. Probabilistic methods are currently of crucial importance for research and developments in the field of engineering, which face challenges presented by new materials and technologies and rapidly changing societal needs and values. Contemporary needs related to, for example, performance-based design, service-life design, life-cycle analysis, product optimization, assessment of existing structures and structural robustness give rise to new developments as well as accurate and practically applicable probabilistic and statistical engineering methods to support these developments. These proceedings are a valuable resource for anyone interested in contemporary developments in the field of probabilistic engineering applications.

180 Days Of Math For Fourth Grade (Practice, Assess, Diagnose)

by Jodene Smith

Support fourth grade students with 180 daily practice activities to build their mathematical fluency and demonstrate their understanding. Each problem is tied to a specific mathematical concept to help students gain regular practice of key grade-level skills. This book features quick, diagnostic-based activities that correlate to College and Career Readiness and other state standards, and includes data-driven assessment tips. Digital resources include assessment analysis tools and PDFs of the activity sheets. With this 4th grade math workbook, students will improve their math skills in no time!

180 Days of MATH for Third Grade: Practice-Assess-Diagnose

by Jodene Smith

This book provides third-grade students with 180 daily practice activities to build their mathematical fluency. Each problem is tied to a specific mathematical concept to help students gain regular practice of key grade-level skills.

2014 Ready Common Core Mathematics Instruction 7

by Curriculum Associates Llc.

NIMAC-sourced textbook

Refine Search

Showing 1 through 25 of 13,454 results