Browse Results

Showing 6,001 through 6,025 of 100,000 results

3D Imaging—Multidimensional Signal Processing and Deep Learning: Images, Augmented Reality and Information Technologies, Volume 1 (Smart Innovation, Systems and Technologies #349)

by Srikanta Patnaik Roumen Kountchev Yonghang Tai Roumiana Kountcheva

This book presents high-quality research in the field of 3D imaging technology. The fourth edition of International Conference on 3D Imaging Technology (3DDIT-MSP&DL) continues the good traditions already established by the first three editions of the conference to provide a wide scientific forum for researchers, academia, and practitioners to exchange newest ideas and recent achievements in all aspects of image processing and analysis, together with their contemporary applications. The conference proceedings are published in two volumes. The main topics of the papers comprise famous trends as: 3D image representation, 3D image technology, 3D images and graphics, and computing and 3D information technology. In these proceedings, special attention is paid at the 3D tensor image representation, the 3D content generation technologies, big data analysis, and also deep learning, artificial intelligence, the 3D image analysis and video understanding, the 3D virtual and augmented reality, and many related areas. The first volume contains papers in 3D image processing, transforms, and technologies. The second volume is about computing and information technologies, computer images and graphics and related applications. The two volumes of the book cover a wide area of the aspects of the contemporary multidimensional imaging and the related future trends from data acquisition to real-world applications based on various techniques and theoretical approaches.

3D Imaging—Multidimensional Signal Processing and Deep Learning: Multidimensional Signals, Images, Video Processing and Applications, Volume 2 (Smart Innovation, Systems and Technologies #298)

by Lakhmi C. Jain Roumen Kountchev Yonghang Tai Roumiana Kountcheva

This book gathers selected papers presented at the conference “Advances in 3D Image and Graphics Representation, Analysis, Computing and Information Technology,” one of the first initiatives devoted to the problems of 3D imaging in all contemporary scientific and application areas. The two volumes of the book cover wide area of the aspects of the contemporary multidimensional imaging and outline the related future trends from data acquisition to real-world applications based on new techniques and theoretical approaches. This volume contains papers aimed at the multidimensional systems and signal processing, deep learning, mathematical approaches and the related applications. The related topics are multidimensional multi-component image processing; multidimensional image representation and super-resolution; compression of multidimensional spatio-temporal images; multidimensional image transmission systems; multidimensional signal processing; prediction and filtering of multidimensional process; intelligent multi-spectral and hyper-spectral image processing, intelligent multi-view image processing, 3D deep learning, 3D GIS and graphic database; data-based MD image retrieval and knowledge data mining; watermarking, hiding and encryption of MD images; intelligent visualization of MD images; forensic analysis systems for M3D graphics algorithm; 3D VR (Virtual Reality)/AR (Augmented Reality); applications of multidimensional signal processing; applications of multidimensional systems; multidimensional filters and filter-banks.

3D Imaging—Multidimensional Signal Processing and Deep Learning: Multidimensional Signals, Video Processing and Applications, Volume 2 (Smart Innovation, Systems and Technologies #348)

by Srikanta Patnaik Roumen Kountchev Yonghang Tai Roumiana Kountcheva

This book presents high-quality research in the field of 3D imaging technology. The fourth edition of International Conference on 3D Imaging Technology (3DDIT-MSP&DL) continues the good traditions already established by the first three editions of the conference to provide a wide scientific forum for researchers, academia and practitioners to exchange newest ideas and recent achievements in all aspects of image processing and analysis, together with their contemporary applications. The conference proceedings are published in 2 volumes. The main topics of the papers comprise famous trends as: 3D image representation, 3D image technology, 3D images and graphics, and computing and 3D information technology. In these proceedings, special attention is paid at the 3D tensor image representation, the 3D content generation technologies, big data analysis, and also deep learning, artificial intelligence, the 3D image analysis and video understanding, the 3D virtual and augmented reality, and many related areas. The first volume contains papers in 3D image processing, transforms and technologies. The second volume is about computing and information technologies, computer images and graphics and related applications. The two volumes of the book cover a wide area of the aspects of the contemporary multidimensional imaging and the related future trends from data acquisition to real-world applications based on various techniques and theoretical approaches.

3D Immersive and Interactive Learning

by Yiyu Cai

3D technology is not new; research on 3D started back in early 1960s. But unlike in previous times, 3D technology has now rapidly entered our daily life from cinema to office to home. Using 3D for education is a new yet challenging task. This book will present several innovative efforts using 3D for immersive and interactive learning covering a wide spectrum of education including gifted program, normal (technical) stream, and special needs education. The book will also share experience on curriculum-based 3D learning in classroom setting and co-curriculum-based 3D student research projects. The book is organized as follows. Chapter 1 introduces the fundamentals of 3D educational technology and their applications in immersive and interactive learning. Chapter 2 discusses the use of virtual reality in teaching and learning of Molecular Biology. Chapter 3 presents the daVinci Lab @ River Valley High School. Chapter 4 describes the 3D education development process. Chapter 5 studies the adaption 3D system for learning gains in lower secondary normal (technical) stream. Chapter 6 investigates the effects of virtual reality technology on spatial visualization skills. Chapter 7 showcases a sabbatical program for students to use 3D for Science, Technology, Engineering and Mathematics (STEM) learning. Chapter 8 shares the use of 3D virtual pink dolphin to assist special education. The foreword of this book is written by Dr Cheah Horn Mun, Director, Education Technology Division, Ministry of Education, Singapore.

3D Integration for NoC-based SoC Architectures (Integrated Circuits and Systems)

by Axel Jantsch Abbas Sheibanyrad Frédéric Pétrot

This book presents the research challenges that are due to the introduction of the 3rd dimension in chips for researchers and covers the whole architectural design approach for 3D-SoCs. Nowadays the 3D-Integration technologies, 3D-Design techniques, and 3D-Architectures are emerging as interesting, truly hot, broad topics. The present book gathers the recent advances in the whole domain by renowned experts in the field to build a comprehensive and consistent book around the hot topics of three-dimensional architectures and micro-architectures. This book includes contributions from high level international teams working in this field.

3D Integration in VLSI Circuits: Implementation Technologies and Applications (Devices, Circuits, and Systems)

by Katsuyuki Sakuma and Krzysztof Iniewski

Currently, the term 3D integration includes a wide variety of different integration methods, such as 2.5-dimensional (2.5D) interposer-based integration, 3D integrated circuits (3D ICs), 3D systems-in-package (SiP), 3D heterogeneous integration, and monolithic 3D ICs. The goal of this book is to provide readers with an understanding of the latest challenges and issues in 3D integration. TSVs are not the only technology element needed for 3D integration. There are numerous other key enabling technologies required for 3D integration, and the speed of the development in this emerging field is very rapid. To provide readers with state-of-the-art information on 3D integration research and technology developments, each chapter has been contributed by some of the world’s leading scientists and experts from academia, research institutes, and industry from around the globe. Covers chip/wafer level 3D integration technology, memory stacking, reconfigurable 3D, and monolithic 3D IC. Discusses the use of silicon interposer and organic interposer. Presents architecture, design, and technology implementations for 3D FPGA integration. Describes oxide bonding, Cu/SiO2 hybrid bonding, adhesive bonding, and solder bonding. Addresses the issue of thermal dissipation in 3D integration.

3D Integration of Resistive Switching Memory (Frontiers in Semiconductor Technology)

by Qing Luo

This book offers a thorough exploration of the three-dimensional integration of resistive memory in all aspects, from the materials, devices, array-level issues, and integration structures to its applications. Resistive random-access memory (RRAM) is one of the most promising candidates for next-generation nonvolatile memory applications owing to its superior characteristics including simple structure, high switching speed, low power consumption, and compatibility with standard complementary metal oxide semiconductor (CMOS) process. To achieve large-scale, high-density integration of RRAM, the 3D cross array is undoubtedly the ideal choice. This book introduces the 3D integration technology of RRAM, and breaks it down into five parts: 1: Associative Problems in Crossbar array and 3D architectures;2: Selector Devices and Self-Selective Cells; 3: Integration of 3D RRAM; 4: Reliability Issues in 3D RRAM; 5: Applications of 3D RRAM beyond Storage.The book aspires to provide a relevant reference for students, researchers, engineers, and professionals working with resistive random-access memory or those interested in 3D integration technology in general.

3D Interconnect Architectures for Heterogeneous Technologies: Modeling and Optimization

by Thilo Pionteck Lennart Bamberg Jan Moritz Joseph Alberto García-Ortiz

This book describes the first comprehensive approach to the optimization of interconnect architectures in 3D systems on chips (SoCs), specially addressing the challenges and opportunities arising from heterogeneous integration. Readers learn about the physical implications of using heterogeneous 3D technologies for SoC integration, while also learning to maximize the 3D-technology gains, through a physical-effect-aware architecture design. The book provides a deep theoretical background covering all abstraction-levels needed to research and architect tomorrow’s 3D-integrated circuits, an extensive set of optimization methods (for power, performance, area, and yield), as well as an open-source optimization and simulation framework for fast exploration of novel designs.

3D Kinematics

by Thomas Haslwanter

This book presents an introduction to the analysis of general movements in 3D space, especially for movements of the human body. It is based on the lecture notes of a class on 3D Kinematics, which the author has been holding in the Master Degree Program of his home institution, the University of Applied Sciences Upper Austria. The lecture introduces the mathematics underlying the measurement and analysis of 3D movements. The target audience primarily comprises research experts in the field, but the book may also be beneficial for graduate students alike.

3D Math Primer for Graphics and Game Development (Wordware Game Math Library)

by Ian Parberry Fletcher Dunn

This engaging book presents the essential mathematics needed to describe, simulate, and render a 3D world. Reflecting both academic and in-the-trenches practical experience, the authors teach you how to describe objects and their positions, orientations, and trajectories in 3D using mathematics. The text provides an introduction to mathematics for

3D Mesh Processing and Character Animation: With Examples Using OpenGL, OpenMesh and Assimp

by Ramakrishnan Mukundan

3D Mesh Processing and Character Animation focusses specifically on topics that are important in three-dimensional modelling, surface design and real-time character animation. It provides an in-depth coverage of data structures and popular methods used in geometry processing, keyframe and inverse kinematics animations and shader based processing of mesh objects. It also introduces two powerful and versatile libraries, OpenMesh and Assimp, and demonstrates their usefulness through implementations of a wide range of algorithms in mesh processing and character animation respectively. This Textbook is written for students at an advanced undergraduate or postgraduate level who are interested in the study and development of graphics algorithms for three-dimensional mesh modeling and analysis, and animations of rigged character models. The key topics covered in the book are mesh data structures for processing adjacency queries, simplification and subdivision algorithms, mesh parameterization methods, 3D mesh morphing, skeletal animation, motion capture data, scene graphs, quaternions, inverse kinematics algorithms, OpenGL-4 tessellation and geometry shaders, geometry processing and terrain rendering.

3D Microelectronic Packaging: From Architectures to Applications (Springer Series in Advanced Microelectronics #64)

by Yan Li Deepak Goyal

This book offers a comprehensive reference guide for graduate students and professionals in both academia and industry, covering the fundamentals, architecture, processing details, and applications of 3D microelectronic packaging. It provides readers an in-depth understanding of the latest research and development findings regarding this key industry trend, including TSV, die processing, micro-bumps for LMI and MMI, direct bonding and advanced materials, as well as quality, reliability, fault isolation, and failure analysis for 3D microelectronic packages. Images, tables, and didactic schematics are used to illustrate and elaborate on the concepts discussed. Readers will gain a general grasp of 3D packaging, quality and reliability concerns, and common causes of failure, and will be introduced to developing areas and remaining gaps in 3D packaging that can help inspire future research and development.

3D Microelectronic Packaging: From Fundamentals to Applications (Springer Series in Advanced Microelectronics #57)

by Yan Li Deepak Goyal

This volume provides a comprehensive reference for graduate students and professionals in both academia and industry on the fundamentals, processing details, and applications of 3D microelectronic packaging, an industry trend for future microelectronic packages. Chapters written by experts cover the most recent research results and industry progress in the following areas: TSV, die processing, micro bumps, direct bonding, thermal compression bonding, advanced materials, heat dissipation, thermal management, thermal mechanical modeling, quality, reliability, fault isolation, and failure analysis of 3D microelectronic packages. Numerous images, tables, and didactic schematics are included throughout. This essential volume equips readers with an in-depth understanding of all aspects of 3D packaging, including packaging architecture, processing, thermal mechanical and moisture related reliability concerns, common failures, developing areas, and future challenges, providing insights into key areas for future research and development.

3D Modeling & Animation: A Primer

by Magesh Chandramouli

"If I were still teaching introductory computer graphics, I would not hesitate to use this textbook as it has just the right amount of coverage of the topic for a semester course and is presented in a highly appealing manner to engage the reader." – Gary Bertoline, PhD, Distinguished Professor of Computer Graphics Technology, Purdue University, USA Graphics-based 3D modeling and animation are relevant not only in the motion picture and video game industry, but also in many other disciplines including creative arts, engineering, architecture, education, medicine, etc. Understanding the basics of 3D modeling, and animation requires understanding some basic concepts in physics and math. While some books assume readers’ prior knowledge of these concepts, 3D Modeling & Animation: A Primer explains these important concepts in a visually engaging manner. This book is not just for university students, but for anyone with an interest in computer graphics modeling and animation. Using a Software-Agnostic approach, this book focuses on modeling and animation concepts spanning across multiple software platforms. Employing a balanced approach that is neither too technical nor too artistic, this book instills the need for creativity and visual composition in animation. KEY FEATURES: • Uses a simple, clear, and concise approach to explain the basics of modeling and animation • Two hundred plus vibrant images to easily understand and appreciate complex concepts • Review questions at chapter ends to help readers better review the content AUTHOR: Magesh Chandramouli is a Professor of Computer Graphics Technology at Purdue University Northwest and is a Distinguished Visiting Faculty of Computer Graphics at Feng Chia University, Taiwan. He is currently serving as the Director of Programs of the Engineering Design Graphics Division of the American Society for Engineering Education. He was a Frederick Andrews Fellow at Purdue University, West Lafayette, where he completed his PhD. He received Master of Science from the University of Calgary, Canada; Master of Engineering from the National University of Singapore; and B.E. from College of Engineering, Guindy, India. He has received National and International awards for his scholarly accomplishments and has delivered invited lectures in reputed universities and research centers around the world.

3D Modeling in AutoCAD: Creating and Using 3D Models in AutoCAD 2000, 2000i, 2002, and 2004

by John Wilson

* For AutoCAD 2004, 2002, and 2000 users Take your AutoCAD skills to the next level -- master its 3D modeling capabilities. Using the same 2D commands and tools you are accustomed to drafting with, you can actually construct the object you are designing.

3D Modeling of Buildings: Outstanding Sites

by Raphaële Héno Laure Chandelier

Conventional topographic databases, obtained by capture on aerial or spatial images provide a simplified 3D modeling of our urban environment, answering the needs of numerous applications (development, risk prevention, mobility management, etc.). However, when we have to represent and analyze more complex sites (monuments, civil engineering works, archeological sites, etc.), these models no longer suffice and other acquisition and processing means have to be implemented. This book focuses on the study of adapted lifting means for “notable buildings”. The methods tackled in this book cover lasergrammetry and the current techniques of dense correlation based on images using conventional photogrammetry.

3D Modeling of Nonlinear Wave Phenomena on Shallow Water Surfaces

by I. B. Abbasov

With climate change, erosion, and human encroachment on coastal environments growing all over the world, it is increasingly important to protect populations and environments close to the sea from storms, tsunamis, and other events that can be not just costly to property but deadly. This book is one step in bringing the science of protection from these events forward, the most in-depth study of its kind ever published. The analytic and numerical modeling problems of nonlinear wave activities in shallow water are analyzed in this work. Using the author’s unique method described herein, the equations of shallow water are solved, and asymmetries that cannot be described by the Stokes theory are solved. Based on analytical expressions, the impacts of dispersion effects to wave profiles transformation are taken into account. The 3D models of the distribution and refraction of nonlinear surface gravity wave at the various coast formations are introduced, as well. The work covers the problems of numerical simulation of the run-up of nonlinear surface gravity waves in shallow water, transformation of the surface waves for the 1D case, and models for the refraction of numerical modeling of the run-up of nonlinear surface gravity waves at beach approach of various slopes. 2D and 3D modeling of nonlinear surface gravity waves are based on Navier-Stokes equations. In 2D modeling the influence of the bottom of the coastal zone on flooding of the coastal zone during storm surges was investigated. Various stages of the run-up of nonlinear surface gravity waves are introduced and analyzed. The 3D modeling process of the run-up is tested for the coast protection work of the slope type construction. Useful for students and veteran engineers and scientists alike, this is the only book covering these important issues facing anyone working with coastal models and ocean, coastal, and civil engineering in this area.

3D Motion Graphics for 2D Artists: Conquering the 3rd Dimension

by Bill Byrne

Add 3D to your mograph skillset! For the experienced 2D artist, this lavishly illustrated, 4 color book presents the essentials to building and compositing 3D elements into your 2D world of film and broadcast. Concepts and techniques are presented in concise, step-by-step tutorials, hundreds of which are featured throughout. Featured applications include Photoshop, Illustrator, After Effects, and Cinema 4D.

3D Motion of Rigid Bodies: A Foundation for Robot Dynamics Analysis (Studies in Systems, Decision and Control #191)

by Ernesto Olguín Díaz

This book offers an excellent complementary text for an advanced course on the modelling and dynamic analysis of multi-body mechanical systems, and provides readers an in-depth understanding of the modelling and control of robots. While the Lagrangian formulation is well suited to multi-body systems, its physical meaning becomes paradoxically complicated for single rigid bodies. Yet the most advanced numerical methods rely on the physics of these single rigid bodies, whose dynamic is then given among multiple formulations by the set of the Newton–Euler equations in any of their multiple expression forms. This book presents a range of simple tools to express in succinct form the dynamic equation for the motion of a single rigid body, either free motion (6-dimension), such as that of any free space navigation robot or constrained motion (less than 6-dimension), such as that of ground or surface vehicles. In the process, the book also explains the equivalences of (and differences between) the different formulations.

3D Movie Making: Stereoscopic Digital Cinema From Script To Screen

by Bernard Mendiburu

Hollywood is going 3D! Join the revolution with this primer to all of the essential skills for live action 3D, from preproduction through distribution. 3D perception and science is presented in an accessible way that provides the principles of Stereoscopic vision you need to make the transition from the 2D world. Tools of the trade are enumerated with an eye on current constraints and what is coming down the pike to smooth the way. Step-by-step instructions detail how 3D processes affect every stage of the production including screenwriting, art direction, principle photography, editing, visual effects and distribution. The companion DVD includes an array of 2D and 3D images that demonstrate concepts and techniques, 3D movie shorts that showcase alternative techniques, After Effects project files to explore and manipulate for effect, and a resource list of software tools and tutorials that demonstrate techniques. The DVD is not included with the E-book. Please contact the publisher for access to the DVD content by emailing dennis.mcgonagle@taylorandfrancis.com

3D Movie Making: Stereoscopic Digital Cinema from Script to Screen

by Bernard Mendiburu

Hollywood is going 3D! Join the revolution with this primer to all of the essential skills for live action 3D, from preproduction through distribution.3D perception and science is presented in an accessible way that provides the principles of Stereoscopic vision you need to make the transition from the 2D world. Tools of the trade are enumerated with an eye on current constraints and what is coming down the pike to smooth the way. Step-by-step instructions detail how 3D processes affect every stage of the production including screenwriting, art direction, principle photography, editing, visual effects and distribution.The downloadable resources include an array of 2D and 3D images that demonstrate concepts and techniques, 3D movie shorts that showcase alternative techniques, After Effects project files to explore and manipulate for effect, and a resource list of software tools and tutorials that demonstrate techniques.

3D Multiscale Physiological Human

by Nadia Magnenat-Thalmann Osman Ratib Hon Fai Choi

3D Multiscale Physiological Human aims to promote scientific exchange by bringing together overviews and examples of recent scientific and technological advancements across a wide range of research disciplines. As a result, the variety in methodologies and knowledge paradigms are contrasted, revealing potential gaps and opportunities for integration. Chapters have been contributed by selected authors in the relevant domains of tissue engineering, medical image acquisition and processing, visualization, modeling, computer aided diagnosis and knowledge management. The multi-scale and multi-disciplinary research aspects of articulations in humans are highlighted, with a particular emphasis on medical diagnosis and treatment of musculoskeletal diseases and related disorders. The need for multi-scale modalities and multi-disciplinary research is an emerging paradigm in the search for a better biological and medical understanding of the human musculoskeletal system. This is particularly motivated by the increasing socio-economic burden of disability and musculoskeletal diseases, especially in the increasing population of elderly people. Human movement is generated through a complex web of interactions between embedded physiological systems on different spatiotemporal scales, ranging from the molecular to the organ level. Much research is dedicated to the understanding of each of these systems, using methods and modalities tailored for each scale. Nevertheless, combining knowledge from different perspectives opens new venues of scientific thinking and stimulates innovation. Integration of this mosaic of multifaceted data across multiple scales and modalities requires further exploration of methods in simulations and visualization to obtain a comprehensive synthesis. However, this integrative approach cannot be achieved without a broad appreciation for the multiple research disciplines involved.

3D Nanoelectronic Computer Architecture and Implementation (Series in Material Science and Engineering)

by David Crawley K. Nikolic M. Forshaw

It is becoming increasingly clear that the two-dimensional layout of devices on computer chips hinders the development of high-performance computer systems. Three-dimensional structures will be needed to provide the performance required to implement computationally intensive tasks. 3-D Nanoelectronic Computer Architecture and Implementation reviews the state of the art in nanoelectronic device design and fabrication and discusses the architectural aspects of 3-D designs, including the possible use of molecular wiring and carbon nanotube interconnections. This is a valuable reference for those involved in the design and development of nanoelectronic devices and technology.

3D Origami Art

by Jun Mitani

Easily Create Origami with Curved Folds and Surfaces Origami—making shapes only through folding—reveals a fascinating area of geometry woven with a variety of representations. The world of origami has progressed dramatically since the advent of computer programs to perform the necessary computations for origami design. 3D Origami Art presents the design methods underlying 3D creations derived from computation. It includes numerous photos and design drawings called crease patterns, which are available for download on the author’s website. Through the book’s clear figures and descriptions, readers can easily create geometric 3D structures out of a set of lines and curves drawn on a 2D plane. The author uses various shapes of sheets such as rectangles and regular polygons, instead of square paper, to create the origami. Many of the origami creations have a 3D structure composed of curved surfaces, and some of them have complicated forms. However, the background theory underlying all the creations is very simple. The author shows how different origami forms are designed from a common theory.

3D Origami Fun!: 25 Fantastic, Foldable Paper Projects

by Stephanie Martyn

Imaginative 3D origami projects that anyone can make!Do you love the art of paper folding? Well, your favorite pastime goes 3D in this origami guide! Inspired by the kawaii style everyone loves, 3D Origami Fun! shows you how to up your paper-folding game with twenty-five spectacular projects. From cupcakes to butterflies to sea turtles, each page features detailed explanations and step-by-step photos for constructing eye-catching sculptures using basic folds and origami pieces. Whether you're new to paper crafts or a seasoned pro, this book will teach you how to build a variety of impressive 3D origami projects.So take out your paper, flex your fingers, and get ready to create dozens of fun origami projects you won't find anywhere else!

Refine Search

Showing 6,001 through 6,025 of 100,000 results