Browse Results

Showing 70,151 through 70,175 of 100,000 results

Artificial Neural Networks: Alpha Unpredictability and Chaotic Dynamics

by Marat Akhmet Madina Tleubergenova Akylbek Zhamanshin Zakhira Nugayeva

Mathematical chaos in neural networks is a powerful tool that reflects the world’s complexity and has the potential to uncover the mysteries of the brain’s intellectual activity. Through this monograph, the authors aim to contribute to modern chaos research, combining it with the fundamentals of classical dynamical systems and differential equations. The readers should be reassured that an in-depth understanding of chaos theory is not a prerequisite for working in the area designed by the authors. Those interested in the discussion can have a basic understanding of ordinary differential equations and the existence of bounded solutions of quasi-linear systems on the real axis. Based on the novelties, this monograph aims to provide one of the most powerful approaches to studying complexities in neural networks through mathematical methods in differential equations and, consequently, to create circumstances for a deep comprehension of brain activity and artificial intelligence. A large part of the book consists of newly obtained contributions to the theory of recurrent functions, Poisson stable, and alpha unpredictable solutions and ultra Poincaré chaos of quasi-linear and strongly nonlinear neural networks such as Hopfield neural networks, shunting inhibitory cellular neural networks, inertial neural networks, and Cohen-Grossberg neural networks. The methods and results presented in this book are meant to benefit senior researchers, engineers, and specialists working in artificial neural networks, machine and deep learning, computer science, quantum computers, and applied and pure mathematics. This broad applicability underscores the value and relevance of this research area to a large academic community and the potential impact it can have on various fields.

Artificial Neural Networks (Methods in Molecular Biology #1260)

by Hugh Cartwright

This volume presents examples of how ANNs are applied in biological sciences and related areas. Chapters focus on the analysis of intracellular sorting information, prediction of the behavior of bacterial communities, biometric authentication, studies of Tuberculosis, gene signatures in breast cancer classification, use of mass spectrometry in metabolite identification, visual navigation, and computer diagnosis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Artificial Neural Networks: Second Edition aids scientists in continuing to study Artificial Neural Networks (ANNs).

Artificial Neural Networks (Methods in Molecular Biology #2190)

by Hugh Cartwright

This volume presents examples of how Artificial Neural Networks (ANNs) are applied in biological sciences and related areas. Chapters cover a wide variety of topics, including the analysis of intracellular sorting information, prediction of the behavior of bacterial communities, biometric authentication, studies of Tuberculosis, gene signatures in breast cancer classification, the use of mass spectrometry in metabolite identification, visual navigation, and computer diagnosis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Artificial Neural Networks: Third Edition should be of value to all scientists interested in the hands-on application of ANNs in the biosciences.

Artificial Neural Networks: A Practical Course

by Ivan Nunes da Silva Danilo Hernane Spatti Rogerio Andrade Flauzino Luisa Helena Bartocci Liboni Silas Franco dos Reis Alves

This book provides comprehensive coverage of neural networks, their evolution, theirstructure, the problems they can solve, and their applications. The first halfof the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation invarious application scenarios. The second half is designed specifically for theproduction of solutions using artificial neural networks to solve practicalproblems arising from different areas of knowledge. It also describes thevarious implementation details that were taken into account to achieve thereported results. These aspects contribute to the maturation and improvement ofexperimental techniques to specify the neural network architecture that is mostappropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professional.

Artificial Neural Networks: Methods and Applications (Methods in Molecular Biology #458)

by David J. Livingstone

In this book, international experts report the history of the application of ANN to chemical and biological problems, provide a guide to network architectures, training and the extraction of rules from trained networks, and cover many cutting-edge examples of the application of ANN to chemistry and biology. Methods involving the mapping and interpretation of Infra Red spectra and modelling environmental toxicology are included. This book is an excellent guide to this exciting field.

Artificial Neural Networks and Machine Learning – ICANN 2016: 25th International Conference on Artificial Neural Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part I (Lecture Notes in Computer Science #9886)

by Alessandro E.P. Villa Paolo Masulli Antonio Javier Pons Rivero

The two volume set, LNCS 9886 + 9887, constitutes the proceedings of the 25th International Conference on Artificial Neural Networks, ICANN 2016, held in Barcelona, Spain, in September 2016. The 121 full papers included in this volume were carefully reviewed and selected from 227 submissions. They were organized in topical sections named: from neurons to networks; networks and dynamics; higher nervous functions; neuronal hardware; learning foundations; deep learning; classifications and forecasting; and recognition and navigation. There are 47 short paper abstracts that are included in the back matter of the volume.

Artificial Neural Networks and Machine Learning – ICANN 2016: 25th International Conference on Artificial Neural Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part II (Lecture Notes in Computer Science #9887)

by Alessandro E.P. Villa Paolo Masulli Antonio Javier Pons Rivero

The two volume set, LNCS 9886 + 9887, constitutes the proceedings of the 25th International Conference on Artificial Neural Networks, ICANN 2016, held in Barcelona, Spain, in September 2016. The 121 full papers included in this volume were carefully reviewed and selected from 227 submissions. They were organized in topical sections named: from neurons to networks; networks and dynamics; higher nervous functions; neuronal hardware; learning foundations; deep learning; classifications and forecasting; and recognition and navigation. There are 47 short paper abstracts that are included in the back matter of the volume.

Artificial Neural Networks and Machine Learning – ICANN 2017: 26th International Conference on Artificial Neural Networks, Alghero, Italy, September 11-14, 2017, Proceedings, Part I (Lecture Notes in Computer Science #10613)

by Stefano Rovetta Paul F.M.J. Verschure Alessandro E.P. Villa Alessandra Lintas

The two volume set, LNCS 10613 and 10614, constitutes the proceedings of then 26th International Conference on Artificial Neural Networks, ICANN 2017, held in Alghero, Italy, in September 2017. The 128 full papers included in this volume were carefully reviewed and selected from 270 submissions. They were organized in topical sections named: From Perception to Action; From Neurons to Networks; Brain Imaging; Recurrent Neural Networks; Neuromorphic Hardware; Brain Topology and Dynamics; Neural Networks Meet Natural and Environmental Sciences; Convolutional Neural Networks; Games and Strategy; Representation and Classification; Clustering; Learning from Data Streams and Time Series; Image Processing and Medical Applications; Advances in Machine Learning. There are 63 short paper abstracts that are included in the back matter of the volume.

Artificial Neural Networks and Machine Learning – ICANN 2017: 26th International Conference on Artificial Neural Networks, Alghero, Italy, September 11-14, 2017, Proceedings, Part II (Lecture Notes in Computer Science #10614)

by Stefano Rovetta Paul F.M.J. Verschure Alessandro E.P. Villa Alessandra Lintas

The two volume set, LNCS 10613 and 10614, constitutes the proceedings of then 26th International Conference on Artificial Neural Networks, ICANN 2017, held in Alghero, Italy, in September 2017. The 128 full papers included in this volume were carefully reviewed and selected from 270 submissions. They were organized in topical sections named: From Perception to Action; From Neurons to Networks; Brain Imaging; Recurrent Neural Networks; Neuromorphic Hardware; Brain Topology and Dynamics; Neural Networks Meet Natural and Environmental Sciences; Convolutional Neural Networks; Games and Strategy; Representation and Classification; Clustering; Learning from Data Streams and Time Series; Image Processing and Medical Applications; Advances in Machine Learning. There are 63 short paper abstracts that are included in the back matter of the volume.

Artificial Neural Networks and Machine Learning – ICANN 2018: 27th International Conference On Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part Ii (Lecture Notes in Computer Science #11140)

by Věra Kůrková Yannis Manolopoulos Barbara Hammer Lazaros Iliadis Ilias Maglogiannis

This three-volume set LNCS 11139-11141 constitutes the refereed proceedings of the 27th International Conference on Artificial Neural Networks, ICANN 2018, held in Rhodes, Greece, in October 2018. The papers presented in these volumes was carefully reviewed and selected from total of 360 submissions. They are related to the following thematic topics: AI and Bioinformatics, Bayesian and Echo State Networks, Brain Inspired Computing, Chaotic Complex Models, Clustering, Mining, Exploratory Analysis, Coding Architectures, Complex Firing Patterns, Convolutional Neural Networks, Deep Learning (DL), DL in Real Time Systems, DL and Big Data Analytics, DL and Big Data, DL and Forensics, DL and Cybersecurity, DL and Social Networks, Evolving Systems – Optimization, Extreme Learning Machines, From Neurons to Neuromorphism, From Sensation to Perception, From Single Neurons to Networks, Fuzzy Modeling, Hierarchical ANN, Inference and Recognition, Information and Optimization, Interacting with The Brain, Machine Learning (ML), ML for Bio Medical systems, ML and Video-Image Processing, ML and Forensics, ML and Cybersecurity, ML and Social Media, ML in Engineering, Movement and Motion Detection, Multilayer Perceptrons and Kernel Networks, Natural Language, Object and Face Recognition, Recurrent Neural Networks and Reservoir Computing, Reinforcement Learning, Reservoir Computing, Self-Organizing Maps, Spiking Dynamics/Spiking ANN, Support Vector Machines, Swarm Intelligence and Decision-Making, Text Mining, Theoretical Neural Computation, Time Series and Forecasting, Training and Learning.

Artificial Neural Networks and Machine Learning – ICANN 2018: 27th International Conference On Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part Ii (Lecture Notes in Computer Science #11140)

by Ilias Maglogiannis Lazaros Iliadis Barbara Hammer Yannis Manolopoulos Věra Kůrková

This three-volume set LNCS 11139-11141 constitutes the refereed proceedings of the 27th International Conference on Artificial Neural Networks, ICANN 2018, held in Rhodes, Greece, in October 2018. The papers presented in these volumes was carefully reviewed and selected from total of 360 submissions. They are related to the following thematic topics: AI and Bioinformatics, Bayesian and Echo State Networks, Brain Inspired Computing, Chaotic Complex Models, Clustering, Mining, Exploratory Analysis, Coding Architectures, Complex Firing Patterns, Convolutional Neural Networks, Deep Learning (DL), DL in Real Time Systems, DL and Big Data Analytics, DL and Big Data, DL and Forensics, DL and Cybersecurity, DL and Social Networks, Evolving Systems – Optimization, Extreme Learning Machines, From Neurons to Neuromorphism, From Sensation to Perception, From Single Neurons to Networks, Fuzzy Modeling, Hierarchical ANN, Inference and Recognition, Information and Optimization, Interacting with The Brain, Machine Learning (ML), ML for Bio Medical systems, ML and Video-Image Processing, ML and Forensics, ML and Cybersecurity, ML and Social Media, ML in Engineering, Movement and Motion Detection, Multilayer Perceptrons and Kernel Networks, Natural Language, Object and Face Recognition, Recurrent Neural Networks and Reservoir Computing, Reinforcement Learning, Reservoir Computing, Self-Organizing Maps, Spiking Dynamics/Spiking ANN, Support Vector Machines, Swarm Intelligence and Decision-Making, Text Mining, Theoretical Neural Computation, Time Series and Forecasting, Training and Learning.

Artificial Neural Networks and Machine Learning – ICANN 2018: 27th International Conference On Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part Ii (Lecture Notes in Computer Science #11140)

by Ilias Maglogiannis Lazaros Iliadis Barbara Hammer Yannis Manolopoulos Věra Kůrková

This three-volume set LNCS 11139-11141 constitutes the refereed proceedings of the 27th International Conference on Artificial Neural Networks, ICANN 2018, held in Rhodes, Greece, in October 2018. The 139 full and 28 short papers as well as 41 full poster papers and 41 short poster papers presented in these volumes was carefully reviewed and selected from total of 360 submissions. They are related to the following thematic topics: AI and Bioinformatics, Bayesian and Echo State Networks, Brain Inspired Computing, Chaotic Complex Models, Clustering, Mining, Exploratory Analysis, Coding Architectures, Complex Firing Patterns, Convolutional Neural Networks, Deep Learning (DL), DL in Real Time Systems, DL and Big Data Analytics, DL and Big Data, DL and Forensics, DL and Cybersecurity, DL and Social Networks, Evolving Systems – Optimization, Extreme Learning Machines, From Neurons to Neuromorphism, From Sensation to Perception, From Single Neurons to Networks, Fuzzy Modeling, Hierarchical ANN, Inference and Recognition, Information and Optimization, Interacting with The Brain, Machine Learning (ML), ML for Bio Medical systems, ML and Video-Image Processing, ML and Forensics, ML and Cybersecurity, ML and Social Media, ML in Engineering, Movement and Motion Detection, Multilayer Perceptrons and Kernel Networks, Natural Language, Object and Face Recognition, Recurrent Neural Networks and Reservoir Computing, Reinforcement Learning, Reservoir Computing, Self-Organizing Maps, Spiking Dynamics/Spiking ANN, Support Vector Machines, Swarm Intelligence and Decision-Making, Text Mining, Theoretical Neural Computation, Time Series and Forecasting, Training and Learning.

Artificial Neural Networks and Machine Learning – ICANN 2019: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part II (Lecture Notes in Computer Science #11728)

by Igor V. Tetko Věra Kůrková Pavel Karpov Fabian Theis

The proceedings set LNCS 11727, 11728, 11729, 11730, and 11731 constitute the proceedings of the 28th International Conference on Artificial Neural Networks, ICANN 2019, held in Munich, Germany, in September 2019. The total of 277 full papers and 43 short papers presented in these proceedings was carefully reviewed and selected from 494 submissions. They were organized in 5 volumes focusing on theoretical neural computation; deep learning; image processing; text and time series; and workshop and special sessions.

Artificial Neural Networks and Machine Learning – ICANN 2019: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part IV (Lecture Notes in Computer Science #11730)

by Igor V. Tetko Věra Kůrková Pavel Karpov Fabian Theis

The proceedings set LNCS 11727, 11728, 11729, 11730, and 11731 constitute the proceedings of the 28th International Conference on Artificial Neural Networks, ICANN 2019, held in Munich, Germany, in September 2019. The total of 277 full papers and 43 short papers presented in these proceedings was carefully reviewed and selected from 494 submissions. They were organized in 5 volumes focusing on theoretical neural computation; deep learning; image processing; text and time series; and workshop and special sessions.

Artificial Neural Networks and Machine Learning – ICANN 2019: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part III (Lecture Notes in Computer Science #11729)

by Igor V. Tetko Věra Kůrková Pavel Karpov Fabian Theis

The proceedings set LNCS 11727, 11728, 11729, 11730, and 11731 constitute the proceedings of the 28th International Conference on Artificial Neural Networks, ICANN 2019, held in Munich, Germany, in September 2019. The total of 277 full papers and 43 short papers presented in these proceedings was carefully reviewed and selected from 494 submissions. They were organized in 5 volumes focusing on theoretical neural computation; deep learning; image processing; text and time series; and workshop and special sessions.

Artificial Neural Networks and Machine Learning – ICANN 2019: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings (Lecture Notes in Computer Science #11731)

by Igor V. Tetko Věra Kůrková Pavel Karpov Fabian Theis

The proceedings set LNCS 11727, 11728, 11729, 11730, and 11731 constitute the proceedings of the 28th International Conference on Artificial Neural Networks, ICANN 2019, held in Munich, Germany, in September 2019. The total of 277 full papers and 43 short papers presented in these proceedings was carefully reviewed and selected from 494 submissions. They were organized in 5 volumes focusing on theoretical neural computation; deep learning; image processing; text and time series; and workshop and special sessions.

Artificial Neural Networks and Machine Learning – ICANN 2019: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part I (Lecture Notes in Computer Science #11727)

by Igor V. Tetko Věra Kůrková Pavel Karpov Fabian Theis

The proceedings set LNCS 11727, 11728, 11729, 11730, and 11731 constitute the proceedings of the 28th International Conference on Artificial Neural Networks, ICANN 2019, held in Munich, Germany, in September 2019. The total of 277 full papers and 43 short papers presented in these proceedings was carefully reviewed and selected from 494 submissions. They were organized in 5 volumes focusing on theoretical neural computation; deep learning; image processing; text and time series; and workshop and special sessions.

Artificial Neural Networks and Machine Learning – ICANN 2020: 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part II (Lecture Notes in Computer Science #12397)

by Igor Farkaš Paolo Masulli Stefan Wermter

The proceedings set LNCS 12396 and 12397 constitute the proceedings of the 29th International Conference on Artificial Neural Networks, ICANN 2020, held in Bratislava, Slovakia, in September 2020.*The total of 139 full papers presented in these proceedings was carefully reviewed and selected from 249 submissions. They were organized in 2 volumes focusing on topics such as adversarial machine learning, bioinformatics and biosignal analysis, cognitive models, neural network theory and information theoretic learning, and robotics and neural models of perception and action. *The conference was postponed to 2021 due to the COVID-19 pandemic.

Artificial Neural Networks and Machine Learning – ICANN 2020: 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part I (Lecture Notes in Computer Science #12396)

by Igor Farkaš Paolo Masulli Stefan Wermter

The proceedings set LNCS 12396 and 12397 constitute the proceedings of the 29th International Conference on Artificial Neural Networks, ICANN 2020, held in Bratislava, Slovakia, in September 2020.*The total of 139 full papers presented in these proceedings was carefully reviewed and selected from 249 submissions. They were organized in 2 volumes focusing on topics such as adversarial machine learning, bioinformatics and biosignal analysis, cognitive models, neural network theory and information theoretic learning, and robotics and neural models of perception and action. *The conference was postponed to 2021 due to the COVID-19 pandemic.

Artificial Neural Networks and Machine Learning – ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part II (Lecture Notes in Computer Science #12892)

by Igor Farkaš Paolo Masulli Sebastian Otte Stefan Wermter

The proceedings set LNCS 12891, LNCS 12892, LNCS 12893, LNCS 12894 and LNCS 12895 constitute the proceedings of the 30th International Conference on Artificial Neural Networks, ICANN 2021, held in Bratislava, Slovakia, in September 2021.* The total of 265 full papers presented in these proceedings was carefully reviewed and selected from 496 submissions, and organized in 5 volumes.In this volume, the papers focus on topics such as computer vision and object detection, convolutional neural networks and kernel methods, deep learning and optimization, distributed and continual learning, explainable methods, few-shot learning and generative adversarial networks. *The conference was held online 2021 due to the COVID-19 pandemic.

Artificial Neural Networks and Machine Learning – ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part III (Lecture Notes in Computer Science #12893)

by Igor Farkaš Paolo Masulli Sebastian Otte Stefan Wermter

The proceedings set LNCS 12891, LNCS 12892, LNCS 12893, LNCS 12894 and LNCS 12895 constitute the proceedings of the 30th International Conference on Artificial Neural Networks, ICANN 2021, held in Bratislava, Slovakia, in September 2021.* The total of 265 full papers presented in these proceedings was carefully reviewed and selected from 496 submissions, and organized in 5 volumes.In this volume, the papers focus on topics such as generative neural networks, graph neural networks, hierarchical and ensemble models, human pose estimation, image processing, image segmentation, knowledge distillation, and medical image processing. *The conference was held online 2021 due to the COVID-19 pandemic.

Artificial Neural Networks and Machine Learning – ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part I (Lecture Notes in Computer Science #12891)

by Igor Farkaš Paolo Masulli Sebastian Otte Stefan Wermter

The proceedings set LNCS 12891, LNCS 12892, LNCS 12893, LNCS 12894 and LNCS 12895 constitute the proceedings of the 30th International Conference on Artificial Neural Networks, ICANN 2021, held in Bratislava, Slovakia, in September 2021.* The total of 265 full papers presented in these proceedings was carefully reviewed and selected from 496 submissions, and organized in 5 volumes.In this volume, the papers focus on topics such as adversarial machine learning, anomaly detection, attention and transformers, audio and multimodal applications, bioinformatics and biosignal analysis, capsule networks and cognitive models. *The conference was held online 2021 due to the COVID-19 pandemic.

Artificial Neural Networks and Machine Learning – ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part V (Lecture Notes in Computer Science #12895)

by Igor Farkaš Paolo Masulli Sebastian Otte Stefan Wermter

The proceedings set LNCS 12891, LNCS 12892, LNCS 12893, LNCS 12894 and LNCS 12895 constitute the proceedings of the 30th International Conference on Artificial Neural Networks, ICANN 2021, held in Bratislava, Slovakia, in September 2021.* The total of 265 full papers presented in these proceedings was carefully reviewed and selected from 496 submissions, and organized in 5 volumes.In this volume, the papers focus on topics such as representation learning, reservoir computing, semi- and unsupervised learning, spiking neural networks, text understanding, transfers and meta learning, and video processing. *The conference was held online 2021 due to the COVID-19 pandemic.

Artificial Neural Networks and Machine Learning – ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part IV (Lecture Notes in Computer Science #12894)

by Paolo Masulli Stefan Wermter Igor Farkaš Sebastian Otte

The proceedings set LNCS 12891, LNCS 12892, LNCS 12893, LNCS 12894 and LNCS 12895 constitute the proceedings of the 30th International Conference on Artificial Neural Networks, ICANN 2021, held in Bratislava, Slovakia, in September 2021.* The total of 265 full papers presented in these proceedings was carefully reviewed and selected from 496 submissions, and organized in 5 volumes.In this volume, the papers focus on topics such as model compression, multi-task and multi-label learning, neural network theory, normalization and regularization methods, person re-identification, recurrent neural networks, and reinforcement learning. *The conference was held online 2021 due to the COVID-19 pandemic.

Artificial Neural Networks and Machine Learning – ICANN 2022: 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings, Part I (Lecture Notes in Computer Science #13529)

by Plamen Angelov Elias Pimenidis Chrisina Jayne Antonios Papaleonidas Mehmet Aydin

The 4-volumes set of LNCS 13529, 13530, 13531, and 13532 constitutes the proceedings of the 31st International Conference on Artificial Neural Networks, ICANN 2022, held in Bristol, UK, in September 2022. The total of 255 full papers presented in these proceedings was carefully reviewed and selected from 561 submissions. ICANN 2022 is a dual-track conference featuring tracks in brain inspired computing and machine learning and artificial neural networks, with strong cross-disciplinary interactions and applications.

Refine Search

Showing 70,151 through 70,175 of 100,000 results