Browse Results

Showing 70,326 through 70,350 of 100,000 results

Artificial Neural Networks and Machine Learning – ICANN 2024: 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part VII (Lecture Notes in Computer Science #15022)

by Michael Wand Kristína Malinovská Jürgen Schmidhuber Igor V. Tetko

The ten-volume set LNCS 15016-15025 constitutes the refereed proceedings of the 33rd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2024, held in Lugano, Switzerland, during September 17–20, 2024. The 294 full papers and 16 short papers included in these proceedings were carefully reviewed and selected from 764 submissions. The papers cover the following topics: Part I - theory of neural networks and machine learning; novel methods in machine learning; novel neural architectures; neural architecture search; self-organization; neural processes; novel architectures for computer vision; and fairness in machine learning. Part II - computer vision: classification; computer vision: object detection; computer vision: security and adversarial attacks; computer vision: image enhancement; and computer vision: 3D methods. Part III - computer vision: anomaly detection; computer vision: segmentation; computer vision: pose estimation and tracking; computer vision: video processing; computer vision: generative methods; and topics in computer vision. Part IV - brain-inspired computing; cognitive and computational neuroscience; explainable artificial intelligence; robotics; and reinforcement learning. Part V - graph neural networks; and large language models. Part VI - multimodality; federated learning; and time series processing. Part VII - speech processing; natural language processing; and language modeling. Part VIII - biosignal processing in medicine and physiology; and medical image processing. Part IX - human-computer interfaces; recommender systems; environment and climate; city planning; machine learning in engineering and industry; applications in finance; artificial intelligence in education; social network analysis; artificial intelligence and music; and software security. Part X - workshop: AI in drug discovery; workshop: reservoir computing; special session: accuracy, stability, and robustness in deep neural networks; special session: neurorobotics; and special session: spiking neural networks.

Artificial Neural Networks and Machine Learning – ICANN 2024: 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part II (Lecture Notes in Computer Science #15017)

by Michael Wand Kristína Malinovská Jürgen Schmidhuber Igor V. Tetko

The ten-volume set LNCS 15016-15025 constitutes the refereed proceedings of the 33rd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2024, held in Lugano, Switzerland, during September 17–20, 2024. The 294 full papers and 16 short papers included in these proceedings were carefully reviewed and selected from 764 submissions. The papers cover the following topics: Part I - theory of neural networks and machine learning; novel methods in machine learning; novel neural architectures; neural architecture search; self-organization; neural processes; novel architectures for computer vision; and fairness in machine learning. Part II - computer vision: classification; computer vision: object detection; computer vision: security and adversarial attacks; computer vision: image enhancement; and computer vision: 3D methods. Part III - computer vision: anomaly detection; computer vision: segmentation; computer vision: pose estimation and tracking; computer vision: video processing; computer vision: generative methods; and topics in computer vision. Part IV - brain-inspired computing; cognitive and computational neuroscience; explainable artificial intelligence; robotics; and reinforcement learning. Part V - graph neural networks; and large language models. Part VI - multimodality; federated learning; and time series processing. Part VII - speech processing; natural language processing; and language modeling. Part VIII - biosignal processing in medicine and physiology; and medical image processing. Part IX - human-computer interfaces; recommender systems; environment and climate; city planning; machine learning in engineering and industry; applications in finance; artificial intelligence in education; social network analysis; artificial intelligence and music; and software security. Part X - workshop: AI in drug discovery; workshop: reservoir computing; special session: accuracy, stability, and robustness in deep neural networks; special session: neurorobotics; and special session: spiking neural networks.

Artificial Neural Networks and Machine Learning – ICANN 2024: 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part VIII (Lecture Notes in Computer Science #15023)

by Michael Wand Kristína Malinovská Jürgen Schmidhuber Igor V. Tetko

The ten-volume set LNCS 15016-15025 constitutes the refereed proceedings of the 33rd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2024, held in Lugano, Switzerland, during September 17–20, 2024. The 294 full papers and 16 short papers included in these proceedings were carefully reviewed and selected from 764 submissions. The papers cover the following topics: Part I - theory of neural networks and machine learning; novel methods in machine learning; novel neural architectures; neural architecture search; self-organization; neural processes; novel architectures for computer vision; and fairness in machine learning. Part II - computer vision: classification; computer vision: object detection; computer vision: security and adversarial attacks; computer vision: image enhancement; and computer vision: 3D methods. Part III - computer vision: anomaly detection; computer vision: segmentation; computer vision: pose estimation and tracking; computer vision: video processing; computer vision: generative methods; and topics in computer vision. Part IV - brain-inspired computing; cognitive and computational neuroscience; explainable artificial intelligence; robotics; and reinforcement learning. Part V - graph neural networks; and large language models. Part VI - multimodality; federated learning; and time series processing. Part VII - speech processing; natural language processing; and language modeling. Part VIII - biosignal processing in medicine and physiology; and medical image processing. Part IX - human-computer interfaces; recommender systems; environment and climate; city planning; machine learning in engineering and industry; applications in finance; artificial intelligence in education; social network analysis; artificial intelligence and music; and software security. Part X - workshop: AI in drug discovery; workshop: reservoir computing; special session: accuracy, stability, and robustness in deep neural networks; special session: neurorobotics; and special session: spiking neural networks.

Artificial Neural Networks and Machine Learning – ICANN 2024: 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part IX (Lecture Notes in Computer Science #15024)

by Michael Wand Kristína Malinovská Jürgen Schmidhuber Igor V. Tetko

The ten-volume set LNCS 15016-15025 constitutes the refereed proceedings of the 33rd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2024, held in Lugano, Switzerland, during September 17–20, 2024. The 294 full papers and 16 short papers included in these proceedings were carefully reviewed and selected from 764 submissions. The papers cover the following topics: Part I - theory of neural networks and machine learning; novel methods in machine learning; novel neural architectures; neural architecture search; self-organization; neural processes; novel architectures for computer vision; and fairness in machine learning. Part II - computer vision: classification; computer vision: object detection; computer vision: security and adversarial attacks; computer vision: image enhancement; and computer vision: 3D methods. Part III - computer vision: anomaly detection; computer vision: segmentation; computer vision: pose estimation and tracking; computer vision: video processing; computer vision: generative methods; and topics in computer vision. Part IV - brain-inspired computing; cognitive and computational neuroscience; explainable artificial intelligence; robotics; and reinforcement learning. Part V - graph neural networks; and large language models. Part VI - multimodality; federated learning; and time series processing. Part VII - speech processing; natural language processing; and language modeling. Part VIII - biosignal processing in medicine and physiology; and medical image processing. Part IX - human-computer interfaces; recommender systems; environment and climate; city planning; machine learning in engineering and industry; applications in finance; artificial intelligence in education; social network analysis; artificial intelligence and music; and software security. Part X - workshop: AI in drug discovery; workshop: reservoir computing; special session: accuracy, stability, and robustness in deep neural networks; special session: neurorobotics; and special session: spiking neural networks.

Artificial Neural Networks and Machine Learning – ICANN 2024: 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part III (Lecture Notes in Computer Science #15018)

by Michael Wand Kristína Malinovská Jürgen Schmidhuber Igor V. Tetko

The ten-volume set LNCS 15016-15025 constitutes the refereed proceedings of the 33rd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2024, held in Lugano, Switzerland, during September 17–20, 2024. The 294 full papers and 16 short papers included in these proceedings were carefully reviewed and selected from 764 submissions. The papers cover the following topics: Part I - theory of neural networks and machine learning; novel methods in machine learning; novel neural architectures; neural architecture search; self-organization; neural processes; novel architectures for computer vision; and fairness in machine learning. Part II - computer vision: classification; computer vision: object detection; computer vision: security and adversarial attacks; computer vision: image enhancement; and computer vision: 3D methods. Part III - computer vision: anomaly detection; computer vision: segmentation; computer vision: pose estimation and tracking; computer vision: video processing; computer vision: generative methods; and topics in computer vision. Part IV - brain-inspired computing; cognitive and computational neuroscience; explainable artificial intelligence; robotics; and reinforcement learning. Part V - graph neural networks; and large language models. Part VI - multimodality; federated learning; and time series processing. Part VII - speech processing; natural language processing; and language modeling. Part VIII - biosignal processing in medicine and physiology; and medical image processing. Part IX - human-computer interfaces; recommender systems; environment and climate; city planning; machine learning in engineering and industry; applications in finance; artificial intelligence in education; social network analysis; artificial intelligence and music; and software security. Part X - workshop: AI in drug discovery; workshop: reservoir computing; special session: accuracy, stability, and robustness in deep neural networks; special session: neurorobotics; and special session: spiking neural networks.

Artificial Neural Networks and Machine Learning – ICANN 2024: 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part X (Lecture Notes in Computer Science #15025)

by Michael Wand Kristína Malinovská Jürgen Schmidhuber Igor V. Tetko

The ten-volume set LNCS 15016-15025 constitutes the refereed proceedings of the 33rd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2024, held in Lugano, Switzerland, during September 17–20, 2024. The 294 full papers and 16 short papers included in these proceedings were carefully reviewed and selected from 764 submissions. The papers cover the following topics: Part I - theory of neural networks and machine learning; novel methods in machine learning; novel neural architectures; neural architecture search; self-organization; neural processes; novel architectures for computer vision; and fairness in machine learning. Part II - computer vision: classification; computer vision: object detection; computer vision: security and adversarial attacks; computer vision: image enhancement; and computer vision: 3D methods. Part III - computer vision: anomaly detection; computer vision: segmentation; computer vision: pose estimation and tracking; computer vision: video processing; computer vision: generative methods; and topics in computer vision. Part IV - brain-inspired computing; cognitive and computational neuroscience; explainable artificial intelligence; robotics; and reinforcement learning. Part V - graph neural networks; and large language models. Part VI - multimodality; federated learning; and time series processing. Part VII - speech processing; natural language processing; and language modeling. Part VIII - biosignal processing in medicine and physiology; and medical image processing. Part IX - human-computer interfaces; recommender systems; environment and climate; city planning; machine learning in engineering and industry; applications in finance; artificial intelligence in education; social network analysis; artificial intelligence and music; and software security. Part X - workshop: AI in drug discovery; workshop: reservoir computing; special session: accuracy, stability, and robustness in deep neural networks; special session: neurorobotics; and special session: spiking neural networks.

Artificial Neural Networks and Structural Equation Modeling: Marketing and Consumer Research Applications

by Alhamzah Alnoor Khaw Khai Wah Azizul Hassan

This book goes into a detailed investigation of adapting artificial neural network (ANN) and structural equation modeling (SEM) techniques in marketing and consumer research. The aim of using a dual-stage SEM and ANN approach is to obtain linear and non-compensated relationships because the ANN method captures non-compensated relationships based on the black box technology of artificial intelligence. Hence, the ANN approach validates the results of the SEM method. In addition, such the novel emerging approach increases the validity of the prediction by determining the importance of the variables. Consequently, the number of studies using SEM-ANN has increased, but the different types of study cases that show customization of different processes in ANNs method combination with SEM are still unknown, and this aspect will be affecting to the generation results. Thus, there is a need for further investigation in marketing and consumer research. This book bridges the significant gap in this research area. The adoption of SEM and ANN techniques in social commerce and consumer research is massive all over the world. Such an expansion has generated more need to learn how to capture linear and non-compensatory relationships in such area. This book would be a valuable reading companion mainly for business and management students in higher academic organizations, professionals, policy-makers, and planners in the field of marketing. This book would also be appreciated by researchers who are keenly interested in social commerce and consumer research.

Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations

by S. Chakraverty Susmita Mall

Differential equations play a vital role in the fields of engineering and science. Problems in engineering and science can be modeled using ordinary or partial differential equations. Analytical solutions of differential equations may not be obtained easily, so numerical methods have been developed to handle them. Machine intelligence methods, such as Artificial Neural Networks (ANN), are being used to solve differential equations, and these methods are presented in Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations. This book shows how computation of differential equation becomes faster once the ANN model is properly developed and applied.

Artificial Neural Networks in Biological and Environmental Analysis (Analytical Chemistry)

by Grady Hanrahan

Originating from models of biological neural systems, artificial neural networks (ANN) are the cornerstones of artificial intelligence research. Catalyzed by the upsurge in computational power and availability, and made widely accessible with the co-evolution of software, algorithms, and methodologies, artificial neural networks have had a profound

Artificial Neural Networks in Cancer Diagnosis, Prognosis, and Patient Management

by R. N. G. Naguib G. V. Sherbet

The potential value of artificial neural networks (ANN) as a predictor of malignancy has begun to receive increased recognition. Research and case studies can be found scattered throughout a multitude of journals. Artificial Neural Networks in Cancer Diagnosis, Prognosis, and Patient Management brings together the work of top researchers - primaril

Artificial Neural Networks in Pattern Recognition: 10th IAPR TC3 Workshop, ANNPR 2022, Dubai, United Arab Emirates, November 24–26, 2022, Proceedings (Lecture Notes in Computer Science #13739)

by Neamat El Gayar Edmondo Trentin Mirco Ravanelli Hazem Abbas

This book constitutes the refereed proceedings of the 10th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2022, held in Dubai, UAE, in November 2022. The 16 revised full papers presented were carefully reviewed and selected from 24 submissions. The conference presents papers on subject such as pattern recognition and machine learning based on artificial neural networks.

Artificial Neural Networks in Pattern Recognition: 7th IAPR TC3 Workshop, ANNPR 2016, Ulm, Germany, September 28–30, 2016, Proceedings (Lecture Notes in Computer Science #9896)

by Friedhelm Schwenker Hazem M. Abbas Neamat El Gayar Edmondo Trentin

Artificial Neural Networks in Pattern Recognition synthesizes the proceedings of the 4th IAPR TC3 Workshop, ANNPR 2010. Topics include supervised and unsupervised learning, feature selection, pattern recognition in signal and image processing.

Artificial Neural Networks in Pattern Recognition: 9th IAPR TC3 Workshop, ANNPR 2020, Winterthur, Switzerland, September 2–4, 2020, Proceedings (Lecture Notes in Computer Science #12294)

by Thilo Stadelmann Frank-Peter Schilling

This book constitutes the refereed proceedings of the 9th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2020, held in Winterthur, Switzerland, in September 2020. The conference was held virtually due to the COVID-19 pandemic. The 22 revised full papers presented were carefully reviewed and selected from 34 submissions. The papers present and discuss the latest research in all areas of neural network-and machine learning-based pattern recognition. They are organized in two sections: learning algorithms and architectures, and applications.

Artificial Neural Networks in Pattern Recognition: 11th IAPR TC3 Workshop, ANNPR 2024, Montreal, QC, Canada, October 10–12, 2024, Proceedings (Lecture Notes in Computer Science #15154)

by Ching Yee Suen Adam Krzyzak Mirco Ravanelli Edmondo Trentin Cem Subakan Nicola Nobile

This book constitutes the refereed proceedings of the 11th IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2024, held in Montreal, QC, Canada, during October 10–12, 2024. The 27 full papers presented together were carefully reviewed and selected from 46 submissions. The conference focuses on: learning algorithms and architectures; applications in medical and health sciences; applications in computer vision; applications in NLP, speech, and music; applications in environmental and biological sciences.

Artificial Neural Networks in Pattern Recognition: 8th Iapr Tc3 Workshop, Annpr 2018, Siena, Italy, September 19-21, 2018, Proceedings (Lecture Notes in Computer Science #11081)

by Edmondo Trentin Friedhelm Schwenker Luca Pancioni

This book constitutes the refereed proceedings of the 8th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2018, held in Siena, Italy, in September 2018.The 29 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 35 submissions. The papers present and discuss the latest research in all areas of neural network- and machine learning-based pattern recognition. They are organized in two sections: learning algorithms and architectures, and applications. Chapter "Bounded Rational Decision-Making with Adaptive Neural Network Priors" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Artificial Neural Networks with Java: Tools For Building Neural Network Applications

by Igor Livshin

Use Java to develop neural network applications in this practical book. After learning the rules involved in neural network processing, you will manually process the first neural network example. This covers the internals of front and back propagation, and facilitates the understanding of the main principles of neural network processing. Artificial Neural Networks with Java also teaches you how to prepare the data to be used in neural network development and suggests various techniques of data preparation for many unconventional tasks. <P><P> The next big topic discussed in the book is using Java for neural network processing. You will use the Encog Java framework and discover how to do rapid development with Encog, allowing you to create large-scale neural network applications. <P><P> The book also discusses the inability of neural networks to approximate complex non-continuous functions, and it introduces the micro-batch method that solves this issue. The step-by-step approach includes plenty of examples, diagrams, and screen shots to help you grasp the concepts quickly and easily.

Artificial Neural Networks with Java: Tools for Building Neural Network Applications

by Igor Livshin

Develop neural network applications using the Java environment. After learning the rules involved in neural network processing, this second edition shows you how to manually process your first neural network example. The book covers the internals of front and back propagation and helps you understand the main principles of neural network processing. You also will learn how to prepare the data to be used in neural network development and you will be able to suggest various techniques of data preparation for many unconventional tasks. This book discusses the practical aspects of using Java for neural network processing. You will know how to use the Encog Java framework for processing large-scale neural network applications. Also covered is the use of neural networks for approximation of non-continuous functions. In addition to using neural networks for regression, this second edition shows you how to use neural networks for computer vision. It focuses on image recognition such as the classification of handwritten digits, input data preparation and conversion, and building the conversion program. And you will learn about topics related to the classification of handwritten digits such as network architecture, program code, programming logic, and execution. The step-by-step approach taken in the book includes plenty of examples, diagrams, and screenshots to help you grasp the concepts quickly and easily.What You Will LearnUse Java for the development of neural network applicationsPrepare data for many different tasksCarry out some unusual neural network processingUse a neural network to process non-continuous functionsDevelop a program that recognizes handwritten digitsWho This Book Is ForIntermediate machine learning and deep learning developers who are interested in switching to Java

Artificial Neural Networks with TensorFlow 2: ANN Architecture Machine Learning Projects

by Poornachandra Sarang

Develop machine learning models across various domains. This book offers a single source that provides comprehensive coverage of the capabilities of TensorFlow 2 through the use of realistic, scenario-based projects.After learning what's new in TensorFlow 2, you'll dive right into developing machine learning models through applicable projects. This book covers a wide variety of ANN architectures—starting from working with a simple sequential network to advanced CNN, RNN, LSTM, DCGAN, and so on. A full chapter is devoted to each kind of network and each chapter consists of a full project describing the network architecture used, the theory behind that architecture, what data set is used, the pre-processing of data, model training, testing and performance optimizations, and analysis. This practical approach can either be used from the beginning through to the end or, if you're already familiar with basic ML models, you can dive right into the application that interests you. Line-by-line explanations on major code segments help to fill in the details as you work and the entire project source is available to you online for learning and further experimentation. With Artificial Neural Networks with TensorFlow 2 you'll see just how wide the range of TensorFlow's capabilities are. What You'll LearnDevelop Machine Learning ApplicationsTranslate languages using neural networksCompose images with style transferWho This Book Is ForBeginners, practitioners, and hard-cored developers who want to master machine and deep learning with TensorFlow 2. The reader should have working concepts of ML basics and terminologies.

An Artificial Night (Toby Daye #3)

by Seanan McGuire

Changeling knight in the court of the Duke of Shadowed Hills, October "Toby" Daye has survived numerous challenges that would destroy fae and mortal alike. Now Toby must take on a nightmarish new assignment. Someone is stealing both fae and mortal children-and all signs point to Blind Michael. When the young son of Toby's closest friends is snatched from their Northern California home, Toby has no choice but to track the villains down, even when there are only three magical roads by which to reach Blind Michael's realm-home of the legendary Wild Hunt-and no road may be taken more than once. If she cannot escape with all the children before the candle that guides and protects her burns away, Toby herself will fall prey to Blind Michael's inescapable power.And it doesn't bode well for the success of her mission that her own personal Fetch, May Daye-the harbinger of Toby's own death-has suddenly turned up on her doorstep...An Artificial Night is the third installment of the highly praised Toby Daye series.

An Artificial Night (October Daye #3)

by Seanan McGuire

Changeling knight in the court of the Duke of Shadowed Hills, October "Toby" Daye has survived numerous challenges that would destroy fae and mortal alike. Now Toby must take on a nightmarish new assignment. Someone is stealing both fae and mortal children--and all signs point to Blind Michael. When the young son of Toby's closest friends is snatched from their Northern California home, Toby has no choice but to track the villains down, even when there are only three magical roads by which to reach Blind Michael's realm--home of the legendary Wild Hunt--and no road may be taken more than once. If she cannot escape with all the children before the candle that guides and protects her burns away, Toby herself will fall prey to Blind Michael's inescapable power.And it doesn't bode well for the success of her mission that her own personal Fetch, May Daye--the harbinger of Toby's own death--has suddenly turned up on her doorstep...An Artificial Night is the third installment of the highly praised Toby Daye series.

An Artificial Night (October Daye #3)

by Seanan McGuire

Changeling knight in the court of the Duke of Shadowed Hills, October--Toby--Daye has survived numerous challenges that would destroy fae and mortal alike. Now Toby must take on a nightmarish new assignment. Someone is stealing both fae and mortal children--and all signs point to Blind Michael, When the young son of Toby's closest friends is snatched from their Northern California home and his sister falls into a coma-like state, the situation becomes way too personal. Toby has no choice but to track the villains down, even when there are only three magical roads by which to reach Blind Michael's realm--home of the legendary Wild Hunt--and no road may be taken more than once, If she cannot escape with all the children before the candle that guides and protects her burns away, Toby herself will fall prey to the Wild Hunt and Blind Michael's inescapable power, And it doesn't bode well for the success of her mission that her own personal Fetch, May Daye--the harbinger of Toby's own death--has suddenly turned up on her doorstep.

Artificial or Constructed Wetlands: A Suitable Technology for Sustainable Water Management

by María del Durán-Domínguez-de-Bazúa Amado Enrique Navarro-Frómeta Josep M. Bayona

Artificial or constructed wetlands are an emerging technology particularly for tropical areas with water scarcity. For big cities, the sustainable management of water resources taking into account proper use is always challenging. The book presents case studies illustrating the above. As plants and microorganisms are a fundamental part of the correct functioning of these systems, their contribution to the degradation of the organic matter and to the removal and transformation of the pollutant compounds present in the wastewaters is also a highlight of this book.

Artificial Organ Engineering

by Luigi Marrelli Vincenzo Piemonte Maria Cristina Annesini Luca Turchetti

Artificial organs may be considered as small-scale process plants, in which heat, mass and momentum transfer operations and, possibly, chemical transformations are carried out. This book proposes a novel analysis of artificial organs based on the typical bottom-up approach used in process engineering. Starting from a description of the fundamental physico-chemical phenomena involved in the process, the whole system is rebuilt as an interconnected ensemble of elemental unit operations. Each artificial organ is presented with a short introduction provided by expert clinicians. Devices commonly used in clinical practice are reviewed and their performance is assessed and compared by using a mathematical model based approach. Whilst mathematical modelling is a fundamental tool for quantitative descriptions of clinical devices, models are kept simple to remain focused on the essential features of each process. Postgraduate students and researchers in the field of chemical and biomedical engineering will find that this book provides a novel and useful tool for the analysis of existing devices and, possibly, the design of new ones. This approach will also be useful for medical researchers who want to get a deeper insight into the basic working principles of artificial organs.

Artificial Organic Networks: Artificial Intelligence Based on Carbon Networks (Studies in Computational Intelligence #521)

by Hiram Ponce-Espinosa Pedro Ponce-Cruz Arturo Molina

This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: · approximation; · inference; · clustering; · control; · classification; and · audio-signal filtering. The text finishes with a consideration of directions in which AHNs could be implemented and developed in future. A complete LabVIEW(tm) toolkit, downloadable from the book's page at springer. com enables readers to design and implement organic neural networks of their own. The novel approach to creating networks suitable for machine learning systems demonstrated in Artificial Organic Networks will be of interest to academic researchers and graduate students working in areas associated with computational intelligence, intelligent control, systems approximation and complex networks.

Artificial Organs (New Techniques in Surgery Series #4)

by Nadey S. Hakim

This book deals with organ failure and the way it can be managed artificially without requiring a transplant. Written by a mixture of European and US physicians and surgeons, each of the chapters compares the artificial organ to what is currently available from the transplant point of view to highlight the current and modern available techniques for organ replacement. The book will be a useful reading for postgraduate students and people interested in modern surgical and medical technology.

Refine Search

Showing 70,326 through 70,350 of 100,000 results