Browse Results

Showing 90,976 through 91,000 of 100,000 results

Applied Statistics Using Stata: A Guide for the Social Sciences

by Mehmet Mehmetoglu Tor Georg Jakobsen

Clear, intuitive and written with the social science student in mind, this book represents the ideal combination of statistical theory and practice. It focuses on questions that can be answered using statistics and addresses common themes and problems in a straightforward, easy-to-follow manner. The book carefully combines the conceptual aspects of statistics with detailed technical advice providing both the ‘why’ of statistics and the ‘how’. Built upon a variety of engaging examples from across the social sciences it provides a rich collection of statistical methods and models. Students are encouraged to see the impact of theory whilst simultaneously learning how to manipulate software to meet their needs. The book also provides: Original case studies and data sets Practical guidance on how to run and test models in Stata Downloadable Stata programmes created to work alongside chapters A wide range of detailed applications using Stata Step-by-step notes on writing the relevant code. This excellent text will give anyone doing statistical research in the social sciences the theoretical, technical and applied knowledge needed to succeed.

Applied Statistics Using Stata: A Guide for the Social Sciences

by Mehmet Mehmetoglu Tor Georg Jakobsen

Clear, intuitive and written with the social science student in mind, this book represents the ideal combination of statistical theory and practice. It focuses on questions that can be answered using statistics and addresses common themes and problems in a straightforward, easy-to-follow manner. The book carefully combines the conceptual aspects of statistics with detailed technical advice providing both the ‘why’ of statistics and the ‘how’. Built upon a variety of engaging examples from across the social sciences it provides a rich collection of statistical methods and models. Students are encouraged to see the impact of theory whilst simultaneously learning how to manipulate software to meet their needs. The book also provides: Original case studies and data sets Practical guidance on how to run and test models in Stata Downloadable Stata programmes created to work alongside chapters A wide range of detailed applications using Stata Step-by-step notes on writing the relevant code. This excellent text will give anyone doing statistical research in the social sciences the theoretical, technical and applied knowledge needed to succeed.

Applied Statistics Using Stata: A Guide for the Social Sciences

by Mehmet Mehmetoglu Tor Georg Jakobsen

Straightforward, clear, and applied, this book will give you the theoretical and practical basis you need to apply data analysis techniques to real data. Combining key statistical concepts with detailed technical advice, it addresses common themes and problems presented by real research, and shows you how to adjust your techniques and apply your statistical knowledge to a range of datasets. It also embeds code and software output throughout and is supported by online resources to enable practice and safe experimentation. The book includes: · Original case studies and data sets · Practical exercises and lists of commands for each chapter · Downloadable Stata programmes created to work alongside chapters · A wide range of detailed applications using Stata · Step-by-step guidance on writing the relevant code. This is the perfect text for anyone doing statistical research in the social sciences getting started using Stata for data analysis.

Applied Statistics Using Stata: A Guide for the Social Sciences

by Mehmet Mehmetoglu Tor Georg Jakobsen

Straightforward, clear, and applied, this book will give you the theoretical and practical basis you need to apply data analysis techniques to real data. Combining key statistical concepts with detailed technical advice, it addresses common themes and problems presented by real research, and shows you how to adjust your techniques and apply your statistical knowledge to a range of datasets. It also embeds code and software output throughout and is supported by online resources to enable practice and safe experimentation. The book includes: · Original case studies and data sets · Practical exercises and lists of commands for each chapter · Downloadable Stata programmes created to work alongside chapters · A wide range of detailed applications using Stata · Step-by-step guidance on writing the relevant code. This is the perfect text for anyone doing statistical research in the social sciences getting started using Stata for data analysis.

Applied Statistics and Data Science: Proceedings of Statistics 2021 Canada, Selected Contributions (Springer Proceedings in Mathematics & Statistics #375)

by Yogendra P. Chaubey Salim Lahmiri Fassil Nebebe Arusharka Sen

This proceedings volume features top contributions in modern statistical methods from Statistics 2021 Canada, the 6th Annual Canadian Conference in Applied Statistics, held virtually on July 15-18, 2021. Papers are contributed from established and emerging scholars, covering cutting-edge and contemporary innovative techniques in statistics and data science. Major areas of contribution include Bayesian statistics; computational statistics; data science; semi-parametric regression; and stochastic methods in biology, crop science, ecology and engineering. It will be a valuable edited collection for graduate students, researchers, and practitioners in a wide array of applied statistical and data science methods.

Applied Statistics and Econometrics: Basic Topics and Tools with Gretl and R

by Bjørnar Karlsen Kivedal

This accessible textbook introduces the foundations of applied econometrics and statistics for undergraduate students. It covers key topics in econometrics by using step-by-step examples in Gretl and R, providing a guide to using statistical software and the tools for econometric analysis in one self-contained resource. Taking a concise, non-technical approach, the book covers topics including simple regression and hypothesis testing, multiple regression with control variables and isolating effects, instrumental variables, dummy variables, non-linear effects, probability models, heteroskedasticity, time series analysis, and other applied statistical tools such as t-tests and chi squared tests. The book uses small data sets to easily facilitate students’ transition from manual statistical calculations to using and understanding statistical software, including step-by-step examples of regression analysis, as well as additional chapters to aid with econometric notation and mathematical prerequisites, and accompanying online exercises and data sets. This book will be a valuable resource for upper undergraduate students taking courses in introductory econometrics and statistics, as well as students in business administration and other fields of study in social sciences utilising quantitative methods. Graduate students may also benefit from the book.

Applied Statistics and Multivariate Data Analysis for Business and Economics: A Modern Approach Using R, SPSS, Stata, and Excel (Springer Texts in Business and Economics)

by Thomas Cleff

This comprehensive textbook equips students of economics and business, as well as industry professionals, with essential principles, techniques, and applications of applied statistics, statistical testing, and multivariate data analysis. Through real-world business examples, it illustrates the practical use of univariate, bivariate, and multivariate statistical methods. The content spans a broad range of topics, from data collection and scaling to the presentation and fundamental univariate analysis of quantitative data, while also demonstrating advanced analytical techniques for exploring multivariate relationships. The book systematically covers all topics typically included in university-level courses on statistics and advanced applied data analysis. Beyond theoretical discussion, it offers hands-on guidance for using statistical software tools such as Excel, SPSS, Stata, and R. In this completely revised and updated second edition, new sections on logistic regression are included, along with enhanced examples and solutions using R for all covered statistical methods. This edition provides a robust resource for mastering applied statistics in both academic and professional settings.

Applied Statistics and Multivariate Data Analysis for Business and Economics: A Modern Approach Using SPSS, Stata, and Excel

by Thomas Cleff

This textbook will familiarize students in economics and business, as well as practitioners, with the basic principles, techniques, and applications of applied statistics, statistical testing, and multivariate data analysis. Drawing on practical examples from the business world, it demonstrates the methods of univariate, bivariate, and multivariate statistical analysis. The textbook covers a range of topics, from data collection and scaling to the presentation and simple univariate analysis of quantitative data, while also providing advanced analytical procedures for assessing multivariate relationships. Accordingly, it addresses all topics typically covered in university courses on statistics and advanced applied data analysis. In addition, it does not limit itself to presenting applied methods, but also discusses the related use of Excel, SPSS, and Stata.

Applied Statistics and Probability for Engineers

by Douglas C. Montgomery George C. Runger

Applied Statistics and Probability for Engineers provides a practical approach to probability and statistical methods. Students learn how the material will be relevant in their careers by including a rich collection of examples and problem sets that reflect realistic applications and situations. This product focuses on real engineering applications and real engineering solutions while including material on the bootstrap, increased emphasis on the use of p-value, coverage of equivalence testing, and combining p-values. The base content, examples, exercises and answers presented in this product have been meticulously checked for accuracy.

Applied Statistics for Agriculture, Veterinary, Fishery, Dairy and Allied Fields

by Pradip Kumar Sahu

This book is aimed at a wide range of readers who lack confidence in the mathematical and statistical sciences, particularly in the fields of Agriculture, Veterinary, Fishery, Dairy and other related areas. Its goal is to present the subject of statistics and its useful tools in various disciplines in such a manner that, after reading the book, readers will be equipped to apply the statistical tools to extract otherwise hidden information from their data sets with confidence. Starting with the meaning of statistics, the book introduces measures of central tendency, dispersion, association, sampling methods, probability, inference, designs of experiments and many other subjects of interest in a step-by-step and lucid manner. The relevant theories are described in detail, followed by a broad range of real-world worked-out examples, solved either manually or with the help of statistical packages. In closing, the book also includes a chapter on which statistical packages to use, depending on the user's respective requirements.

Applied Statistics for Business and Economics

by Robert M. Leekley

Designed for a one-semester course, Applied Statistics for Business and Economics offers students in business and the social sciences an effective introduction to some of the most basic and powerful techniques available for understanding their world. Numerous interesting and important examples reflect real-life situations, stimulating students to t

Applied Statistics for Business and Management using Microsoft Excel

by Linda Herkenhoff John Fogli

Applied Business Statistics for Business and Management using Microsoft Excel is the first book to illustrate the capabilities of Microsoft Excel to teach applied statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical statistical problems in industry. If understanding statistics isn't your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in statistics courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Applied Business Statistics for Business and Management capitalizes on these improvements by teaching students and practitioners how to apply Excel to statistical techniques necessary in their courses and workplace. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand business problems. Practice problems are provided at the end of each chapter with their solutions.

Applied Statistics for Economics and Business

by Durmuş Özdemir

This textbook introduces readers to practical statisticalissues by presenting them within the context of real-life economics andbusiness situations. It presents the subject in a non-threatening manner, withan emphasis on concise, easily understandable explanations. It has beendesigned to be accessible and student-friendly and, as an added learningfeature, provides all the relevant data required to complete the accompanyingexercises and computing problems, which are presented at the end of eachchapter. It also discusses index numbers and inequality indices in detail,since these are of particular importance to students and commonly omitted intextbooks. Throughout the text it is assumed that the student has noprior knowledge of statistics. It is aimed primarily at business and economicsundergraduates, providing them with the basic statistical skills necessary forfurther study of their subject. However, students of other disciplines willalso find it relevant.

Applied Statistics for Economists

by Margaret Lewis

This book is an undergraduate text that introduces students to commonly-used statistical methods in economics. Using examples based on contemporary economic issues and readily-available data, it not only explains the mechanics of the various methods, it also guides students to connect statistical results to detailed economic interpretations. Because the goal is for students to be able to apply the statistical methods presented, online sources for economic data and directions for performing each task in Excel are also included.

Applied Statistics for Network Biology: Methods in Systems Biology (Quantitative and Network Biology (VCH) #5)

by Matthias Dehmer Frank Emmert-Streib Armindo Salvador Armin Graber

The book introduces to the reader a number of cutting edge statistical methods which can e used for the analysis of genomic, proteomic and metabolomic data sets. In particular in the field of systems biology, researchers are trying to analyze as many data as possible in a given biological system (such as a cell or an organ). The appropriate statistical evaluation of these large scale data is critical for the correct interpretation and different experimental approaches require different approaches for the statistical analysis of these data. This book is written by biostatisticians and mathematicians but aimed as a valuable guide for the experimental researcher as well computational biologists who often lack an appropriate background in statistical analysis.

Applied Statistics for Public Policy

by Brian P. Macfie Philip M. Nufrio

This practical text provides students with the statistical tools needed to analyze data, and shows how statistics can be used as a tool in making informed, intelligent policy decisions. The authors' approach helps students learn what statistical measures mean and focus on interpreting results, as opposed to memorizing and applying dozens of statistical formulae. The book includes more than 500 end-of-chapter problems, solvable with the easy-to-use Excel spreadsheet application developed by the authors. This template allows students to enter numbers into the appropriate sheet, sit back, and analyze the data. This comprehensive, hands-on textbook requires only a background in high school algebra and has been thoroughly classroom-tested in both undergraduate and graduate level courses. No prior expertise with Excel is required. A disk with the Excel template and the data sets is included with the book, and solutions to the end-of-chapter problems will be provided on the M.E. Sharpe website.

Applied Statistics for Public and Nonprofit Administration

by Kenneth J. Meier Jeffrey L. Brudney John Bohte

As the first book ever published for public administration statistics courses, APPLIED STATISTICS FOR PUBLIC AND NONPROFIT ADMINISTRATION makes a difficult subject accessible to students and practitioners of public administration and to non-profit studies who have little background in statistics or research methods. Steeped in experience and practice, this landmark text remains the first and best in research methods and statistics for students and practitioners in public-and nonprofit-administration. All statistical techniques used by public administration professionals are covered, and all examples in the text relate to public administration and the nonprofit sector. Avoiding jargon and formula, this text uses a step-by-step approach that facilitates student learning.

Applied Statistics for Social and Management Sciences

by Abdul Quader Miah

This book addresses the application of statistical techniques and methods across a wide range of disciplines. While its main focus is on the application of statistical methods, theoretical aspects are also provided as fundamental background information. It offers a systematic interpretation of results often discovered in general descriptions of methods and techniques such as linear and non-linear regression. SPSS is also used in all the application aspects. The presentation of data in the form of tables and graphs throughout the book not only guides users, but also explains the statistical application and assists readers in interpreting important features. The analysis of statistical data is presented consistently throughout the text. Academic researchers, practitioners and other users who work with statistical data will benefit from reading Applied Statistics for Social and Management Sciences.

Applied Statistics for the Social and Health Sciences

by Rachel A. Gordon

Applied Statistics for the Social and Health Sciences provides graduate students in the social and health sciences with the basic skills that they need to estimate, interpret, present, and publish statistical models using contemporary standards. The book targets the social and health science branches such as human development, public health, sociology, psychology, education, and social work in which students bring a wide range of mathematical skills and have a wide range of methodological affinities. For these students, a successful course in statistics will not only offer statistical content but will also help them develop an appreciation for how statistical techniques might answer some of the research questions of interest to them. This book is for use in a two-semester graduate course sequence covering basic univariate and bivariate statistics and regression models for nominal and ordinal outcomes, in addition to covering ordinary least squares regression. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature thorough integration of teaching statistical theory with teaching data processing and analysis teaching of both SAS and Stata "side-by-side" and use of chapter exercises in which students practice programming and interpretation on the same data set and course exercises in which students can choose their own research questions and data set. This book is for a two-semester course. For a one-semester course, see http://www.routledge.com/9780415991544/

Applied Statistics for the Social and Health Sciences

by Rachel A. Gordon

Covering basic univariate and bivariate statistics and regression models for nominal, ordinal, and interval outcomes, Applied Statistics for the Social and Health Sciences provides graduate students in the social and health sciences with fundamental skills to estimate, interpret, and publish quantitative research using contemporary standards.Reflecting the growing importance of "Big Data" in the social and health sciences, this thoroughly revised and streamlined new edition covers best practice in the use of statistics in social and health sciences, draws upon new literatures and empirical examples, and highlights the importance of statistical programming, including coding, reproducibility, transparency, and open science.Key features of the book include: interweaving the teaching of statistical concepts with examples from publicly available social and health science data and literature excerpts; thoroughly integrating the teaching of statistical theory with the teaching of data access, processing, and analysis in Stata; recognizing debates and critiques of the origins and uses of quantitative methods.

Applied Statistics in Biomedicine and Clinical Trials Design: Selected Papers from 2013 ICSA/ISBS Joint Statistical Meetings (ICSA Book Series in Statistics)

by Zhen Chen Aiyi Liu Yongming Qu Larry Tang Naitee Ting Yi Tsong

This volume is a unique combination of papers that cover critical topics in biostatistics from academic, government, and industry perspectives. The 6 sections cover Bayesian methods in biomedical research; Diagnostic medicine and classification; Innovative Clinical Trials Design; Modelling and Data Analysis; Personalized Medicine; and Statistical Genomics. The real world applications are in clinical trials, diagnostic medicine and genetics. The peer-reviewed contributions were solicited and selected from some 400 presentations at the annual meeting of the International Chinese Statistical Association (ICSA), held with the International Society for Biopharmaceutical Statistics (ISBS). The conference was held in Bethesda in June 2013, and the material has been subsequently edited and expanded to cover the most recent developments.

Applied Statistics in Business and Economics

by David P. Doane Lori E. Seward

Applied Statistics in Business and Economics, 7th edition, provides real meaning to the use of statistics in the real world by using real business situations and real data while appealing to students who want to know the why rather than just the how. The text emphasizes thinking about data, choosing appropriate analytic tools, using computers effectively, and recognizing the limitations of statistics. It motivates student learning through applied current exercises and cases that provide real-world relevance and includes analytics in action, careers, and applications of big data, Artificial Intelligence, and machine learning (including ethical issues). The Doane and Seward authors work as a team, integrating the digital and eBook assets seamlessly. In recognition of a growing interest in analytics training beyond Excel, the textbook now provides an optional introduction to R with illustrations of topics in each chapter. Support for R is further enhanced with Learning Stats modules, tables of R functions, and R-compatible Excel data sets.

Applied Statistics in Social Sciences

by Emilio Gómez-Déniz Enrique Calderín-Ojeda

This work is a detailed description of different discrete and continuous univariate and multivariate distributions with applications in economics and different financial problems and other scenarios in which these recently developed statistical models have been applied in recent years, including actuarial statistics (with emphasis on credibility theory, ruin theory, calculation of insurance premiums, etc.), stochastic frontier analysis (estimation of technical efficiency), duration models (intraday rate of trading), population geography, income and wealth distribution, physical economy, tourism and sports, among others. Each distribution is dealt with in a separate chapter along with descriptions of all possible applications. The authors also provide a detailed analysis of the proposed probabilistic families, discussing their relationship with existing models, statistical properties, analyzing their strengths and weaknesses, similarities and differences, different estimation methods along with comments on possible applications and extensions. Simulation methods are given for most of the models presented. Many of the probabilistic models shown along with their applications in the fields indicated are a result of numerous research articles published by the authors although others are also provided, mainly based on classical formulations, which have been the starting point of more general models. This volume contains an extensive updated bibliography selected from magazines and books on statistics, mathematics, economics, actuarial sciences and computer science. This book is an essential manual for researchers, professionals, professionals and, in general, for graduate students in computer science, engineering, bioinformatics, statistics and mathematics, since the concise writing style makes the book accessible to a wide audience.

Applied Statistics with Python: Volume I: Introductory Statistics and Regression

by Leon Kaganovskiy

Applied Statistics with Python: Volume I: Introductory Statistics and Regression concentrates on applied and computational aspects of statistics, focusing on conceptual understanding and Python-based calculations. Based on years of experience teaching introductory and intermediate Statistics courses at Touro University and Brooklyn College, this book compiles multiple aspects of applied statistics, teaching the reader useful skills in statistics and computational science with a focus on conceptual understanding. This book does not require previous experience with statistics and Python, explaining the basic concepts before developing them into more advanced methods from scratch. Applied Statistics with Python is intended for undergraduate students in business, economics, biology, social sciences, and natural science, while also being useful as a supplementary text for more advanced students.Key Features: Concentrates on more introductory topics such as descriptive statistics, probability, probability distributions, proportion and means hypothesis testing, as well as one-variable regression The book’s computational (Python) approach allows us to study Statistics much more effectively. It removes the tedium of hand/calculator computations and enables one to study more advanced topics Standardized sklearn Python package gives efficient access to machine learning topics Randomized homework as well as exams are provided in the author’s course shell on My Open Math web portal (free)

Applied Statistics with SPSS

by Dr Eelko K Huizingh

Accessibly written and easy to use, Applied Statistics Using SPSS is an all-in-one self-study guide to SPSS and do-it-yourself guide to statistics. Based around the needs of undergraduate students embarking on their own research project, the text's self-help style is designed to boost the skills and confidence of those that will need to use SPSS in the course of doing their research project. The book is pedagogically well developed and contains many screen dumps and exercises, glossary terms and worked examples. Divided into two parts, Applied Statistics Using SPSS covers : 1. A self-study guide for learning how to use SPSS. 2. A reference guide for selecting the appropriate statistical technique and a stepwise do-it-yourself guide for analysing data and interpreting the results. 3. Readers of the book can download the SPSS data file that is used for most of the examples throughout the book here. Geared explicitly for undergraduate needs, this is an easy to follow SPSS book that should provide a step-by-step guide to research design and data analysis using SPSS.

Refine Search

Showing 90,976 through 91,000 of 100,000 results