Browse Results

Showing 99,476 through 99,500 of 100,000 results

Chemokine Receptors as Drug Targets (Methods & Principles in Medicinal Chemistry #46)

by Raimund Mannhold Gerd Folkers Hugo Kubinyi

Chemokines are hormone-like signaling molecules secreted by cells to signal infection and guide the immune response. Following a decade of basic chemokine research, the pharmaceutical industry has now begun to exploit this crucial signaling pathway for the development of innovative drugs against AIDS, cancer, neural and autoimmune diseases. Here is the first reference focusing on these novel drug development opportunities. Opening with a general introduction on chemokine function and chemokine receptor biology, the second part covers the known implications of these signaling molecules in human diseases, such as cancer, neural disorders, and viral infection, including AIDS. The third part systematically surveys current drug development efforts at targeting individual chemokine receptors, as well as other chemokine interaction partners, including up-to-date reports from the pharmaceutical industry.

Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques

by Pablo A. Munoz-Rojas Eduardo A. de Souza Neto Miguel Vaz Junior

With its discussion of strategies for modeling complex materials using new numerical techniques, mainly those based on the finite element method, this monograph covers a range of topics including computational plasticity, multi-scale formulations, optimization and parameter identification, damage mechanics and nonlinear finite elements.

X-Rays in Nanoscience: Spectroscopy, Spectromicroscopy, and Scattering Techniques

by Jinghua Guo

An up-to-date overview of the different x-ray based methods in the hot fields of nanoscience and nanotechnology, including methods for imaging nanomaterials, as well as for probing the electronic structure of nanostructured materials in order to investigate their different properties. Written by authors at one of the world's top facilities working with these methods, this monograph presents and discusses techniques and applications in the fields of x-ray scattering, spectroscopy and microscope imaging. The resulting systematic collection of these advanced tools will benefit graduate students, postdocs as well as professional researchers.

Modern Oxidation Methods

by Jan–Erling Bäckvall

While rust is an unwanted oxidation reaction, there are also many other useful oxidation reactions that are extremely important and number among the most commonly used reactions in the chemical industry. This completely revised, updated second edition now includes additional sections on industrial oxidation and biochemical oxidation. Edited by one of the world leaders in the field, high-quality contributions cover every important aspect from classical to green chemistry methods: - Recent Developments in Metal-catalyzed Dihydroxylation of Alkenes - Transition Metal-Catalyzed Epoxidation of Alkenes - Organocatalytic Oxidation. Ketone-Catalyzed Asymmetric Epoxidation of Alkenes and Synthetic Applications - Catalytic Oxidations with Hydrogen Peroxide in Fluorinated Alcohol Solvents - Modern Oxidation of Alcohols using Environmentally Benign Oxidants - Aerobic Oxidations and Related Reactions Catalyzed by N-Hydro xyphthalimide - Ruthenium-Catalyzed Oxidation for Organic Synthesis - Selective Oxidation of Amines and Sulfides - Liquid Phase Oxidation Reactions Catalyzed by Polyoxometalates - Oxidation of Carbonyl Compounds - Manganese-Catalyzed Oxidation with Hydrogen Peroxide - Biooxidation with Cytochrome P450 Monooxygenases By providing an overview of this vast topic, the book represents an unparalleled aid for organic, catalytic and biochemists working in the field.

Temperature-Programmed Gas Chromatography

by Leonid M. Blumberg

This book provides a comprehensive up-to-date overview of temperature-programmed gas chromatography (GC). The first part of the book introduces the reader to the basics concepts of GC, as well as the key properties of GC columns. The second part describes the mathematical and physical background of GC. In the third part, different aspects in the formation of a chromatogram are discussed, including retention times, peak spacing and peak widths. An invaluable reference for any chromatographer and analytical chemist, it provides all the answers to questions like:* At what temperature does a solute elute in a temperature-programmed analysis? * What is the value of the retention factor of eluting solute? * How wide are the peaks? * How large is the time distance between two peaks? * How do all these parameters depend on the heating rate?

Laser Imaging and Manipulation in Cell Biology

by Francesco S. Pavone

Here, the editor has gathered a team of international experts to present the latest advances in the field of laser imaging and manipulation techniques. The result is broad coverage of the interactions with biological samples to perform novel optical manipulation operations, both on the cellular and tissue levels. Of interest to physicists working and researching laser tissue mechanisms, cell biologists investigating new imaging and manipulation operation on the cellular level, medical doctors working with new laser therapies and diagnostic tools, as well as engineers developing new technologies in the field of optics and lasers.

Anomalous Effects in Simple Metals

by Albert Overhauser

Using potassium as an example, this work presents a unique approach to the anomalous effects in metals, resulting in knowledge that can be applied to similar materials. Most theoretical predictions on the electric, magnetic, optical, and thermal properties of a simple metal do - surprisingly - not agree with experimental behavior found in alkali metals. The purpose of this volume is to document the many phenomena that have violated expectations. It collects in one place the research by Albert Overhauser, one of the pioneers of the field. His and his collaborators work has led to a unified synthesis of alkali metal peculiarities. The unique collection of 65 reprint papers, commented where necessary to explain the context and perspective, is preceded by a thorough and well paced introduction. The book is meant to advanced solid state physics and science historians. It might also serve as additional reading in advanced solid state physics courses. With a foreword by Mildred and Gene Dresselhaus

Planning and Integration of Refinery and Petrochemical Operations

by Ali Elkamel Khalid Y. Al-Qahtani

Clearly divided into three main sections, this practical book familiarizes readers with the area of planning in petroleum refining and petrochemical industry, while introducing several planning and modeling strategies encompassing single site refinery plants, multiple refinery networks, petrochemical networks, and refinery and petrochemical planning systems. It equally provides an insight into possible research directions and recommendations for the area of refinery and petrochemical planning. Furthermore, several appendices are included to explain the general background necessary, including stochastic programming, chance constraint programming, and robust optimization. For engineers and managers working in the petroleum industry as well as academic researchers in production, logistics, and supply chain management.

Principles and Practice of Mixtures Toxicology

by Moiz Mumtaz

This first comprehensive treatment of the subject for more than a decade includes the latest research on nanoparticle toxicology. The practical handbook addresses all areas where toxic mixtures are encountered, from environmental via occupational to medical settings, giving special consideration to air and water, and to the specific requirements for study design in mixture toxicology. While no extensive prior knowledge or toxicological experience is required, the practice-oriented case studies and examples in the second part make this the ideal companion for the professional toxicologist in industry or healthcare institutions with little time for academic study.

Carbon Nanotube and Related Field Emitters: Fundamentals and Applications

by Yahachi Saito

Carbon nanotubes (CNTs) have novel properties that make them potentially useful in many applications in nanotechnology, electronics, optics and other fields of materials science. These characteristics include extraordinary strength, unique electrical properties, and the fact that they are efficient heat conductors. Field emission is the emission of electrons from the surface of a condensed phase into another phase due to the presence of high electric fields. CNT field emitters are expected to make a breakthrough in the development of field emission display technology and enable miniature X-ray sources that will find a wide variety of applications in electronic devices, industry, and medical and security examinations. This first monograph on the topic covers all aspects in a concise yet comprehensive manner - from the fundamentals to applications. Divided into four sections, the first part discusses the preparation and characterization of carbon nanotubes, while part two is devoted to the field emission properties of carbon nanotubes, including the electron emission mechanism, characteristics of CNT electron sources, and dynamic behavior of CNTs during operation. Part three highlights field emission from other nanomaterials, such as carbon nanowalls, diamond, and silicon and zinc oxide nanowires, before concluding with frontier R&D applications of CNT emitters, from vacuum electronic devices such as field emission displays, to electron sources in electron microscopes, X-ray sources, and microwave amplifiers. Edited by a pioneer in the field, each chapter is written by recognized experts in the respective fields.

Catalytic Asymmetric Conjugate Reactions

by Armando Córdova

This unique and long-awaited handbook on this important topic in the hot field of stereoselective organic synthesis covers several types of nucleophiles. Top international authors deal with modern forms of achieving stereoselective conjugate additions based on the use of chiral auxiliaries or asymmetric catalysis, such as P-N ligands, organocatalysis, domino reactions, Lewis acid and base catalysis. There is also a discussion of the employment of enantioselective conjugate addition transformations in total synthesis of important molecules. With its reliable and previously unpublished experimental procedures, this is a true source of high quality information.

Aerosols: Science and Technology

by Igor Agranovski

This self-contained handbook and ready reference examines aerosol science and technology in depth, providing a detailed insight into this progressive field. As such, it covers fundamental concepts, experimental methods, and a wide variety of applications, ranging from aerosol filtration to biological aerosols, and from the synthesis of carbon nanotubes to aerosol reactors. Written by a host of internationally renowned experts in the field, this is an essential resource for chemists and engineers in the chemical and materials disciplines across multiple industries, as well as ideal supplementary reading in graduate level courses.

Trace Analysis with Nanomaterials

by Julia Xiaojun Zhao David T. Pierce

Presenting a wide variety of methods, this book provides a comprehensive overview of the current state -- ranging from bioanalysis to electrochemical sensing, forensics and chemistry, while also covering the toxicity aspects of nanomaterials to humans and the environment. Edited by rising stars in the field, the first section on biological analysis includes an investigation of nanoparticles and micro- and nanofluidic systems, while the second, environmental analysis, looks at the detection, monitoring, and sensing of explosives as well as pollutants, among other topics. The final part covers such advanced methods as the synthesis and characterization of gold nanorods. For analytical chemists, materials scientists, chemists working in trace analysis, and spectroscopists.

Transitions in Molecular Systems

by Hans J. Kupka

Filling the gap for a book covering vibronic, nonadiabatic and diabatic couplings as well as radiationless processes in context, this monograph compiles classic and cutting-edge work from numerous researchers into one handy source. Alongside a description of radiationless processes in statistical large molecules and calculational methods for intramolecular distributions, the authors also investigate the nuclear coordinate dependence of matrix elements. Whole chapters are devoted to the mathematical description of the lifetime and decay of a prepared states as well as miscellaneous applications. The text is supplemented by a number of appendices for optimum usability. With its integration of the necessary mathematical rigor, this is primarily intended for graduate students in theoretical physics and chemistry, but is also indispensable reading for those working in molecular physics, physical chemistry and laser physics.

Handbook of Machine and Computer Vision: The Guide for Developers and Users

by Alexander Hornberg

The second edition of this accepted reference work has been updated to reflect the rapid developments in the field and now covers both 2D and 3D imaging. Written by expert practitioners from leading companies operating in machine vision, this one-stop handbook guides readers through all aspects of image acquisition and image processing, including optics, electronics and software. The authors approach the subject in terms of industrial applications, elucidating such topics as illumination and camera calibration. Initial chapters concentrate on the latest hardware aspects, ranging from lenses and camera systems to camera-computer interfaces, with the software necessary discussed to an equal depth in later sections. These include digital image basics as well as image analysis and image processing. The book concludes with extended coverage of industrial applications in optics and electronics, backed by case studies and design strategies for the conception of complete machine vision systems. As a result, readers are not only able to understand the latest systems, but also to plan and evaluate this technology. With more than 500 images and tables to illustrate relevant principles and steps.

Physics of Solar Cells: From Basic Principles to Advanced Concepts

by Peter Würfel

The new edition of this highly regarded textbook provides a detailed overview of the most important characterization techniques for solar cells and a discussion of their advantages and disadvantages. It describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. The text is now complete with examples of how the appropriate characterization techniques enable the distinction between several potential limitation factors, describing how quantities that have been introduced theoretically in earlier chapters become experimentally accessible. With exercises after each chapter to reinforce the newly acquired knowledge and requiring no more than standard physics knowledge, this book enables students and professionals to understand the factors driving conversion efficiency and to apply this to their own solar cell development.

Group Theory in Solid State Physics and Photonics: Problem Solving with Mathematica

by Wolfram Hergert R. Matthias Geilhufe

While group theory and its application to solid state physics is well established, this textbook raises two completely new aspects. First, it provides a better understanding by focusing on problem solving and making extensive use of Mathematica tools to visualize the concepts. Second, it offers a new tool for the photonics community by transferring the concepts of group theory and its application to photonic crystals. Clearly divided into three parts, the first provides the basics of group theory. Even at this stage, the authors go beyond the widely used standard examples to show the broad field of applications. Part II is devoted to applications in condensed matter physics, i.e. the electronic structure of materials. Combining the application of the computer algebra system Mathematica with pen and paper derivations leads to a better and faster understanding. The exhaustive discussion shows that the basics of group theory can also be applied to a totally different field, as seen in Part III. Here, photonic applications are discussed in parallel to the electronic case, with the focus on photonic crystals in two and three dimensions, as well as being partially expanded to other problems in the field of photonics. The authors have developed Mathematica package GTPack which is available for download from the book's homepage. Analytic considerations, numerical calculations and visualization are carried out using the same software. While the use of the Mathematica tools are demonstrated on elementary examples, they can equally be applied to more complicated tasks resulting from the reader's own research.

Optische Mikroskopie: Funktionsweise und Kontrastierverfahren

by Jörg Haus

In diesem Buch werden die wichtigsten Aspekte der Technik des Lichtmikroskops erklärt wie auch weitergehende und moderne mikroskopische Verfahren. <P><P>Der Text ist leicht verständlich geschrieben mit praktischen Anwendungsbeispielen und vielen mikroskopischen Aufnahmen.

Lehrbuch der Biophysik

by Erich Sackmann Rudolf Merkel

Die Biophysik ist ein sich sehr rasant entwickelndes Wissenschaftsfeld an der Grenze zwischen Physik, Chemie und Biologie. Biophysik behandelt die Kontrolle der Selbstorganisation lebender Materie und deren Funktion durch die Physik. Die Themen reichen von der Steuerung der Struktur und Funktion zellulärer Organellen durch molekulare Kräfte und Zell-Signalsysteme bis zur Physik der Immunologie, Hörphysiologie und Biorhythmen. Das Lehrbuch der bekannten Biophysiker Erich Sackmann und Rudolf Merkel gibt eine umfassende Einführung in das spannende Gebiet der Biophysik, wie es an Hochschulen und Universitäten im deutschsprachigen Raum gelehrt wird. Die Autoren behandeln ausführlich die Mechanik, Thermodynamik und Elektrodynamik der Bausteine lebendiger Systeme wie Proteine, Zelle, Membranen und Vesikel. Ausgehend von diesen Grundlagen werden fortgeschrittenere Themen beleuchtet wie die Dynamik und Selbstorganisation in biologischen Systemen. Die vorliegende zweite Auflage wurde vollständig überarbeitet und mit neuen Themen ergänzt: Messung anisotroper Kräfte in Proteinen, Statistische Mechanik der Nichtgleichgewichtszustände in Proteinen, Entdeckung von Mechano-Enzymen, elektrohydrophobe Aktivierung von Membranproteinen, Physik der Zell-Adhäsion, -Migration und -Proliferation, statische und dynamische Struktur des Chromatins.

Solar Neutrino Physics: The Interplay between Particle Physics and Astronomy

by Lothar Oberauer Aldo Ianni Aldo Serenelli

A guide to the fascinating interplay between particle physics and astrophysics that highlights the discovery of neutrino oscillations Written by three international experts on the topic, Solar Neutrino Physics offers a review of the status of solar physics with its strong link to neutrino physics. The book explores constitutive physics and the governing equations of standard solar models. The authors also review the theory of neutrinos in the Standard Model and the related detector experiments. The book contains a summary of the results from various experiments and develops a coherent view of the current state-of-the-art of solar neutrino physics. Solar Neutrino Physics shows how solar models can be calibrated with the observational constraints of the age, mass, radius, and luminosity of the sun. The authors present general evolutionary properties of the sun as a star, past and future. They also discuss the solar neutrino production via the pp-chains and CNO-cycle, including the important role of the chemical composition of the sun. A very important source of information about the solar interior is offered by helioseismology, the study of solar oscillations. This important book: -Presents a high-level overview of the field of solar neutrino physics -Brings together data and their interpretation of results obtained at various solar neutrino observatories -Combines the theory of nuclear reactions with solar neutrino experiments -Contains a review of SNO+, JUNO, LENA, Hyper-Kamiokande, and DUNE. Written for astronomers, physicists, and high energy physicists, Solar Neutrino Physics contains a review of the field of neutrino physics, the relevant equations, and the impact of matter on the behavior of neutrino oscillations.

Geheimnisvoller Kosmos: Astrophysik und Kosmologie im 21. Jahrhundert

by Roland Wengenmayr Thomas Bührke

Für die dritte Auflage wurden alle Aufsätze aktualisiert und sieben neue Beiträge aufgenommen. So komplettiert ein Kapitel über spektroskopische Biomarker das nunmehr mit drei Beiträgen vertretene, hoch aktuelle Thema extrasolare Planeten. Zwei neue Artikel zur Antimaterie befassen sich mit den physikalischen Grundlagen, insbesondere der Materie-Antimaterie-Asymmetrie im Urknall, und dem Nachweis von Antiteilchen im Weltraum. Die Problematik der Dunklen Materie erhellt ein Kapitel über die derzeit laufenden Laborexperimente. Beobachtungen mit dem Weltraumteleskop Herschel haben neue Erkenntnisse zur Galaxienentwicklung gebracht. Und nicht zuletzt lassen neue, hoch empfindliche Untersuchungen von Apollo-Mondgestein die Entstehung des Erdtrabanten in einem anderen Licht erscheinen. Astrophysik und Kosmologie machen also auch im 21. Jahrhundert große Fortschritte. „Sowohl der Fachwissenschaftler als auch der Hobbyastronom, der direkt am rasanten Erkenntnisgewinn der modernen Astrophysik und Kosmologie teilhaben möchte, kommt mit diesem Buch auf seine Kosten.“ Sterne und Weltraum „… Wer sich einen schnellen, gleichwohl gründlichen Eindruck von Ergebnissen, Methoden und Problemen der Astronomie im 21. Jahrhundert verschaffen will, kommt an diesem Buch nicht vorbei.“ MaxPlanck Forschung

Physik des Golfspiels

by Iv N Egry

Physik, die schlau macht. Erfahrener Autor beschreibt die physikalischen Grundlagen beim Golfsport. Für die an Naturwissenschaften interessierten Golfer, die schon immer wissen wollten, wie sie perfekter golfen können.

Electrowetting: Fundamental Principles and Practical Applications

by Frieder Mugele Jason Heikenfeld

Starting from the basic principles of wetting, electrowetting and fluid dynamics all the way up to those engineering aspects relevant for the development of specific devices, this is a comprehensive introduction and overview of the theoretical and practical aspects. Written by two of the most knowledgeable experts in the field, the text covers both current as well as possible future applications, providing basic working principles of lab-on-a-chip devices and such optofluidic devices as adaptive lenses and optical switches. Furthermore, novel e-paper display technology, energy harvesting and supercapacitors as well as electrowetting in the nano-world are discussed. Finally, the book contains a series of exercises and questions for use in courses on microfluidics or electrowetting. With its all-encompassing scope, this book will equally serve the growing community of students and academic and industrial researchers as both an introduction and a standard reference.

Organic Matter in the Universe

by Sun Kwok

Authored by an experienced writer and a well-known researcher of stellar evolution, interstellar matter and spectroscopy, this unique treatise on the formation and observation of organic compounds in space includes a spectroscopy refresher, as well as links to geological findings and finishes with the outlook for future astronomical facilities and solar system exploration missions. A whole section on laboratory simulations includes the Miller-Urey experiment and the ultraviolet photolysis of ices.

Electrocatalysis in Balancing the Natural Carbon Cycle

by Yaobing Wang

Explore the potential of electrocatalysis to balance an off-kilter natural carbon cycle In Electrocatalysis in Balancing the Natural Carbon Cycle, accomplished researcher and author, Yaobing Wang, delivers a focused examination of why and how to solve the unbalance of the natural carbon cycle with electrocatalysis. The book introduces the natural carbon cycle and analyzes current bottlenecks being caused by human activities. It then examines fundamental topics, including CO2 reduction, water splitting, and small molecule (alcohols and acid) oxidation to prove the feasibility and advantages of using electrocatalysis to tune the unbalanced carbon cycle. You’ll realize modern aspects of electrocatalysis through the operando diagnostic and predictable mechanistic investigations. Further, you will be able to evaluate and manage the efficiency of the electrocatalytic reactions. The distinguished author presents a holistic view of solving an unbalanced natural carbon cycle with electrocatalysis. Readers will also benefit from the inclusion of: A thorough introduction to the natural carbon cycle and the anthropogenic carbon cycle, including inorganic carbon to organic carbon and vice versa An exploration of electrochemical catalysis processes, including water splitting and the electrochemistry CO2 reduction reaction (ECO2RR) A practical discussion of water and fuel basic redox parameters, including electrocatalytic materials and their performance evaluation in different electrocatalytic cells A perspective of the operando approaches and computational fundamentals and advances of different electrocatalytic redox reactions Perfect for electrochemists, catalytic chemists, environmental and physical chemists, and inorganic chemists, Electrocatalysis in Balancing the Natural Carbon Cycle will also earn a place in the libraries of solid state and theoretical chemists seeking a one-stop reference for all aspects of electrocatalysis in carbon cycle-related reactions.

Refine Search

Showing 99,476 through 99,500 of 100,000 results